Advertisement

Cell and Tissue Research

, Volume 275, Issue 1, pp 3–26 | Cite as

The organization of the chemosensory system in Drosophila melanogaster: a rewiew

  • Reinhard F. Stocker
Review Article

Abstract

This review surveys the organization of the olfactory and gustatory systems in the imago and in the larva of Drosophila melanogaster, both at the sensory and the central level. Olfactory epithelia of the adult are located primarily on the third antennal segment (funiculus) and on the maxillary palps. About 200 basiconic (BS), 150 trichoid (TS) and 60 coeloconic sensilla (CS) cover the surface of the funiculus, and an additional 60 BS are located on the maxillary palps. Males possess about 30% more TS but 20% fewer BS than females. All these sensilla are multineuronal; they may be purely olfactory or multimodal with an olfactory component. Antennal and maxillary afferents converge onto approximately 35 glomeruli within the antennal lobe. These projections obey precise rules: individual fibers are glomerulus-specific, and different types of sensilla are associated with particular subsets of glomeruli. Possible functions of antennal glomeruli are discussed. In contrast to olfactory sensilla, gustatory sensilla of the imago are located at many sites, including the labellum, the pharynx, the legs, the wing margin and the female genitalia. Each of these sensory sites has its own central target. Taste sensilla are usually composed of one mechano-and three chemosensory neurons. Individual chemosensory neurons within a sensillum respond to distinct subsets of molecules and project into different central target regions. The chemosensory system of the larva is much simpler and consists essentially of three major sensillar complexes on the cephalic lobe, the dorsal, terminal and ventral organs, and a series of pharyngeal sensilla.

Key words

Olfaction Taste Chemosensilla Antennae Chemosensory projections Antennal lobe Glomeruli Drosophila melanogaster (Insecta) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo- and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139Google Scholar
  2. Altner H, Loftus R, Schaller-Selzer L, Tichy H (1983a) Modality-specificity in insect sensilla and multimodal input from body appendages. Fortschr Zool 28:17–31Google Scholar
  3. Altner H, Schaller-Selzer L, Stetter H, Wohlrab I (1983b) Poreless sensilla with inflexible sockets. Cell Tissue Res 234:197–307Google Scholar
  4. Anders G (1955) Untersuchungen über das pleiotrope Manifestationsmuster der Mutante lozenge-clawless (lz cl) von Drosophila melanogaster. Z Indukt Abstamm Vererbungslehre 87:113–186Google Scholar
  5. Angioy AM, Liscia A, Pietra P, Crnjar R (1978) Function of chemosensory wing hairs in Phormia regina M (abstract). 3rd ECRO Congress PaviaGoogle Scholar
  6. Anholt RRH (1991) Odor recognition and olfactory transduction: the new frontier. Chem Senses 16:421–427Google Scholar
  7. Arora K, Rodrigues V, Joshi S, Shanbhag S, Siddiqi O (1987) A gene affecting the specificity of the chemosensory neurons in Drosophila. Nature 330:62–63Google Scholar
  8. Ayer RK, Carlson J (1992) Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes two classes of odorant pathways. J Neurobiol 23:965–982Google Scholar
  9. Ayyub C, Paranjape J, Rodrigues V, Siddiqi O (1990) Genetics of olfactory behaviour in Drosophila melanogaster. J Neurogenet 6:285–262Google Scholar
  10. Banerjee U, Zipursky SL (1990) The role of cell-cell interactions in the development of the Drosophila visual system. Neuron 4:177–187Google Scholar
  11. Been TH, Schomaker CH, Thomas G (1988) Olfactory sensilla on the antenna and maxillary palp of the sheep head fly, Hydrotaea irritans (Fallen) (Diptera: Muscidae). Int J Insect Morphol Embryol 17:121–133Google Scholar
  12. Boeckh J, Ernst KD (1983) Olfactory food and mate recognition. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 78–94Google Scholar
  13. Boeckh J, Tolbert LJ (1993) Synaptic organization and development of the antennal lobe in insects. Microsc Res Tech 24:260–280Google Scholar
  14. Boeckh J, Sandri C, Akert K (1970) Sensorische Eingänge und synaptische Verbindungen im Zentralnervensystem von Insekten. Z Zellforsch 103:429–446Google Scholar
  15. Boeckh J, Ernst KD, Sass H, Waldow U (1984) Anatomical and physiological characteristics of individual neurones in the central antennal pathway of insects. J Insect Physiol 30:15–26Google Scholar
  16. Boeckh J, Distler P, Ernst KD, Hösl M, Malun D (1990) Olfacory bulb and antennal lobe. In: Schild D (ed) Chemosensory information processing. (NATO ASI Series H39, Cell Biology) Springer, Berlin, pp 201–227Google Scholar
  17. Bolwig N (1946) Senses and sense organs of the anterior end of the house fly larvae. Vid Medd Dansk Nat Hist Foren 109:81–217Google Scholar
  18. Borst A (1983) Computation of olfactory signals in Drosophila melanogaster. J Comp Physiol [A] 152:373–383Google Scholar
  19. Borst A, Heisenberg M (1982) Osmotropotaxis in Drosophila melanogaster. J Comp Physiol [A] 147:479–484Google Scholar
  20. Brand A, Perrimon N (1991) Targeted tissue-specific expression of genes in Drosophila: a P element expression system that uses the GAL4 activator. In: Thummel C, Matthews K (eds) Drosophila information newsletter, vol 1. electronic mail publ, DISL@IUBVM.UCS.INDIANA.EDUGoogle Scholar
  21. Buchner E (1991) Genes expressed in the adult brain of Drosophila and effects of their mutation on behavior: a survey of transmitter- and second messenger-related genes. J Neurogenet 7:153–192Google Scholar
  22. Buchner E, Rodrigues V (1983) Autoradiographic localization of [3H]choline uptake in the brain of Drosophila melanogaster. Neurosci Lett 42:25–31Google Scholar
  23. Buchner E, Buchner S, Crawford G, Mason WT, Salvaterra PM, Sattelle DB (1986) Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster. Cell Tissue Res 246:57–62Google Scholar
  24. Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. Carlson J (1991) Olfaction in Drosophila: genetic and molecular analysis. Trends Neurosci 14:520–524Google Scholar
  26. Chambille I, Rospars JP (1981) Deutocérébron de la blatte Blaberus craniifer Burm. (Dictyoptera: Blaberidae): étude qualitative et identification visuelle des glomérules. Int J Insect Morphol Embryol 10:141–165Google Scholar
  27. Chu IW, Axtell RC (1971) Fine structure of the dorsal organ of the house fly larva, Musca domestica L. Z Zellforsch 117:17–34Google Scholar
  28. Chu-Wang IW, Axtell RC (1972a) Fine structure of the terminal organ of the house fly larva, Musca domestica L. Z Zellforsch 127:287–305Google Scholar
  29. Chu-Wang IW, Axtell RC (1972b) Fine structure of the ventral organ of the house fly larva, Musca domestica L. Z Zellforsch 130:489–495Google Scholar
  30. Cobb M, Bruneau S, Jallon JM (1992) Genetic and developmental factors in the olfactory response of Drosophila melanogaster larvae to alcohols. Proc Soc Lond (Biol) 248:103–109Google Scholar
  31. Davis RL, Dauwalder B (1991) The Drosophila dunce locus. Trends Genet 7:224–229Google Scholar
  32. Deak II (1976) Demonstration of sensory neurons in the ectopic cuticle of spineless-aristapedia, a homoeotic mutant of Drosophila. Nature 260:252–254Google Scholar
  33. DeBelle JS, Heisenberg M (1993) Learning, memory and brain structure in Drosophila melanogaster. In: Elsner N, Heisenberg M (eds) Gene-brain-behaviour (abstract). (Proceedings 21st Göttingen Neurobiology Conference) Thieme, Stuttgart New York, p 204Google Scholar
  34. Dethier VG (1976) The hungry fly. Harvard University Press, CambridgeGoogle Scholar
  35. Duve H, Thorpe A (1989) Distribution and functional significance of Met-enkephalin-Arg6-Phe7-and Met-enkephalin-Arg6-Gly7-Leu8-like peptides in the blowfly Calliphora vomitoria. I. Immunocytochemical mapping of neuronal pathways in the brain. Cell Tissue Res 258:147–161Google Scholar
  36. Edgecomb RS, Murdock LL (1992) Central projections of axons from taste hairs on the labellum and tarsi of the blowfly, Phormia regina Meigen. J Comp Neurol 315:431–444Google Scholar
  37. Falk R, Bleiser-Avivi N, Atidia J (1976) Labellar taste organs of Drosophila melanogaster. J Morphol 150:327–342Google Scholar
  38. Ferveur JF, Cobb M, Jallon JM (1989) Complex chemical messages in Drosophila. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum Press, New York London, pp 397–409Google Scholar
  39. Fischbach KF, Heisenberg M (1984) Neurogenetics and behaviour in insects. J Exp Biol 112:65–93Google Scholar
  40. Foelix RF, Stocker RF, Steinbrecht RA (1989) Fine structure of a sensory organ in the arista of Drosophila melanogaster and some other dipterans. Cell Tissue Res 258:277–287Google Scholar
  41. Frederik RD, Denell RE (1982) Embryological origin of the antenno-maxillary complex of the larva of Drosophila melanogaster (Meigen) (Diptera, Drosophilidae). Int J Insect Morphol Embryol 11:227–233Google Scholar
  42. Fujishiro N, Kijima H, Morita H (1984) Impulse frequency and action potential amplitude in labellar chemosensory neurons of Drosophila melanogaster. J Insect Physiol 30:317–325Google Scholar
  43. Getting PA (1971) The sensory control of motor output in fly proboscis extension. Z Vergl Physiol 74:103–120Google Scholar
  44. Ghysen A, O'Kane C (1989) Neural enhancer-like elements as specific cell markers in Drosophila. Development 105:35–52Google Scholar
  45. Grabowski CT, Dethier VG (1954) The structure of the tarsal chemoreceptors of the blowfly, Phormia regina Meigen. J Morphol 94:1–17Google Scholar
  46. Han PL, Levin LR, Reed RR, Davis RL (1992) Preferential expression of the Drosophila rutabaga gene in mushroom bodies, neural centers for learning in insects. Neuron 9:619–627Google Scholar
  47. Hanesch U, Fischbach KF, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–368Google Scholar
  48. Hannaford S, Palka J (1992) Function, physiology and axonal projections of the chemoreceptors of dipteran wings (abstract). Soc Neurosci 18:301Google Scholar
  49. Hannah-Alava A (1958) Morphology and chaetotaxy of of the legs of Drosophila melanogaster. J Morphol 103:281–310Google Scholar
  50. Hansen K, Heumann HG (1971) Die Feinstruktur der tarsalen Schmeckhaare der Fliege Phormia terraenovae Rob.-Desv. Z Zellforsch 117:419–442Google Scholar
  51. Hansson BS, Ljungberg H, Hallberg E, Löfstedt C (1992) Functional specialization of olfactory glomeruli in a moth. Science 256:1313–1315Google Scholar
  52. Harris WA (1972) The maxillae of Drosophila melanogaster as revealed by scanning electron microscopy. J Morphol 138:451–456Google Scholar
  53. Hartenstein V, Posakony JW (1989) Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107:389–405Google Scholar
  54. Heisenberg M (1989) Genetic approach to learning and memory (mnemogenetics) in Drosophila melanogaster. Fortschr Zool 37:3–45Google Scholar
  55. Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2:1–21Google Scholar
  56. Hertweck H (1931) Anatomie und Variabilität des Nervensystems und der Sinnesorgane von Drosophila melanogaster (Meigen). Z Wiss Zool 139:559–663Google Scholar
  57. Hodgkin NM, Bryant PJ (1978) Scanning electron microscopy of the adult of Drosophila melanogaster. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2c. Academic Press, London New York San Francisco, pp 337–358Google Scholar
  58. Homberg U, Montague RA, Hildebrand JG (1988) Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res 254:255–281Google Scholar
  59. Homberg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34:477–501Google Scholar
  60. Hoskins SG, Homberg U, Kingan TG, Christensen TA, Hildebrand JG (1986) Immunocytochemistry of GABA in the antennal lobes of the sphinx moth Manduca sexta. Cell Tissue Res 244:243–252Google Scholar
  61. Itoh T, Yokohari F, Tanimura T, Tominaga Y (1991) The external morphology of sensilla in the sacculus of an antennal flagellum of the fruit fly Drosophila melanogaster (Diptera: Drosophilidae). Int J Insect Morphol Embryol 20:235–244Google Scholar
  62. Jackson FR, Newby LM, Kulkarni SJ (1990) Drosophila GABAergic systems: sequence and expression of glutamic acid decarboxylase. J Neurochem 54:1068–1078Google Scholar
  63. Kaissling KE (1987) In: Kolbow K (ed) R.H. Wright lectures on insect olfaction. Simon Fraser University, Burnaby, BC, pp 1–75Google Scholar
  64. Kankel DR, Ferrus A, Garen SH, Harte PJ, Lewis PE (1980) The structure and development of the nervous system. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2d. Academic Press, London New York San Francisco, pp 295–368Google Scholar
  65. Kanzaki R, Arbas EA, Strausfeld NJ, Hildebrand JG (1989) Physiology and morphology of projection neurons in the antennal lobe of the male moth Manduca sexta. J Comp Physiol [A] 165:427–453Google Scholar
  66. Keller V (1992) Immuncytochemische Untersuchungen am Antennensystem von Drosophila melanogaster mit Hilfe von monoklonalen Antikörpern. Diploma thesis, University of FribourgGoogle Scholar
  67. Kent KS, Harrow ID, Quartaro P, Hildebrand JG (1986) An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in Manduca sexta and certain other sphinx moths and silk moths. Cell Tissue Res 245:237–245Google Scholar
  68. Lancet D (1986) Vertebrate olfactory reception. Annu Rev Neurosci 9:329–355Google Scholar
  69. Laugé G (1982) Development of the genitalia and analia. In: Ransom R (ed) A handbook of Drosophila development. Elsevier, Amsterdam New York Oxford, pp 237–263Google Scholar
  70. Lee JK, Altner H (1986) Primary sensory projections of the labial palp-pit organ of Pieris rapae L. (Lepidoptera: Pieridae). Int J Insect Morphol Embryol 15:439–448Google Scholar
  71. Lienhard MC, Stocker RF (1987) Sensory projection patterns of supernumerary legs and aristae in D. melanogaster. J Exp Zool 244:187–201Google Scholar
  72. Link B (1983) REM und TEM Analyse der Sensillen des mesothorakalen Beines und des dritten Antennensegmentes von Drosophita melanogaster. Diploma thesis, University of FribourgGoogle Scholar
  73. Maes FW, Vedder CG (1978) A morphological and electrophysiological inventory of labellar taste hairs of the blowfly Calliphora vicina. J Insect Physiol 24:667–672Google Scholar
  74. Malun D (1991) Synaptic relationships between GABA-immunoreactive neurons and an identified uniglomerular projection neuron in the antennal lobe of Periplaneta americana: a double-labeling electron microscopic study. Histochemistry 96:197–207Google Scholar
  75. Masson C, Mustaparta H (1990) Chemical information processing in the olfactory system of insects. Physiol Rev 70:199–245Google Scholar
  76. Merritt DJ (1987) The cercal sensilla of the blowfly Lucilia cuprina. I. Structure of the sockets and distal dendritic regions. Tissue Cell 19:287–298Google Scholar
  77. Merritt DJ, Murphey RK (1992) Projections of leg proprioceptors within the CNS of the fly Phormia in relation to the generalized insect ganglion. J Comp Neurol 322:16–34Google Scholar
  78. Merritt DJ, Rice MJ (1984) Innervation of the cercal sensilla on the ovipositor of the Australian sheep blowfly (Lucilia cuprina). Physiol Entomol 9:39–47Google Scholar
  79. Miller A (1950) The internal anatomy and histology of the imago of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. Hafner, New York London, pp 420–534Google Scholar
  80. Mindek G (1968) Proliferations- und Transdeterminationsleistungen der weiblichen Genital-Imaginalscheiben von Drosophila melanogaster nach Kultur in vivo. Rouxs Arch Dev Biol 161:249–280Google Scholar
  81. Mitchell BK, Itagaki H (1992) Interneurons of the suboesophageal ganglion of Sarcophaga bullata responding to gustatory and mechanosensory stimuli. J Comp Physiol [A] 171:213–230Google Scholar
  82. Miyakawa Y (1982) Behavioural evidence for the existence of sugar, salt and amino acid taste receptor cells and some of their properties in Drosophila larvae. J Insect Physiol 28:405–410Google Scholar
  83. Monte P, Woodard C, Ayer R, Lilly M, Sun H, Carlson J (1989) Characterization of the larval olfactory response in Drosophila and its genetic basis. Behav Genet 19:267–283Google Scholar
  84. Morita H (1992) Transduction process and impulse initiation in insect contact chemoreceptor. Zool Sci 9:1–16Google Scholar
  85. Müller U (1993) Nitric oxide: a messenger molecule in the nervous system of the honey bee. In: Elsner N, Heisenberg M (eds) Gene-brain-behaviour (abstract). (Proceedings 21st Göttingen Neurobiology Conference) Thieme, Stuttgart New York, p 2Google Scholar
  86. Murphey RK, Possidente D, Pollack G, Merritt DJ (1989) Modality specific axonal projections in the CNS of the flies Phormia and Drosophila. J Comp Neurol 290:185–200Google Scholar
  87. Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the insect nervous system. Prog Neurobiol 30:1–85Google Scholar
  88. Nässel DR, Elekes K (1992) Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res 267:147–167Google Scholar
  89. Nayak SV, Singh RN (1983) Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 12:273–291Google Scholar
  90. Nayak SV, Singh RN (1985) Primary sensory projections from labella to the brain of adult Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 14:115–129Google Scholar
  91. Nottebohm E, Dambly-Chaudière C, Ghysen A (1992) Connectivity of chemosensory neurons is controlled by the gene poxn in Drosophila. Nature 359:829–832Google Scholar
  92. O'Kane C, Gehring W (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84:9123–9127Google Scholar
  93. Ozaki M (1988) A possible sugar receptor protein found in the labellum of the blowfly, Phormia regina. Zool Sci 5:281–290Google Scholar
  94. Palka J, Lawrence PA, Hart HS (1979) Neural projection patterns from homeotic tissue of Drosophila studied in bithorax mutants and mosaics. Dev Biol 69:549–575Google Scholar
  95. Peters W (1963) Die Sinnesorgane an den Labellen von Calliphora erythrocephala Mg. (Diptera). Z Morphol Ökol Tiere 55:259–320Google Scholar
  96. Pinto L, Stocker RF, Rodrigues V (1988) Anatomical and neurochemical classification of the antennal glomeruli in Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 17:335–344Google Scholar
  97. Pinto L, VijayRaghavan K, Rodrigues V (1992) An enhancer-trap insertion “BTJ409” identifies a subset of chemosensory cells. In: Singh RN (ed) Nervous system: principles of design and function. Wiley Eastern, New Delhi, pp 21–31Google Scholar
  98. Pollack I, Hofbauer A (1991) Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster. Cell Tissue Res 266:391–398Google Scholar
  99. Possidente DR, Murphey RK (1989) Genetic control of sexually dimorphic axon morphology in Drosophila sensory neurons. Dev Biol 132:448–457Google Scholar
  100. Power ME (1946) The antennal centers and their connections within the brain of Drosophila melanogaster. J Comp Neurol 85:485–517Google Scholar
  101. Power ME (1948) The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster. J Comp Neurol 88:347–409Google Scholar
  102. Rane N, Jithra L, Pinto L, Rodrigues V, Krishnan KS (1987) Monoclonal antibodies to synaptic macromolecules of Drosophila melanogaster. J Neuroimmunol 16:331–344Google Scholar
  103. Restifo LL, White K (1990) Molecular and genetic approaches to neurotransmitter and neuromodulator systems in Drosophila. Adv Insect Physiol 22:115–219Google Scholar
  104. Rice MJ (1977) Blowfly ovipositor receptor neurons sensitive to monovalent cation cencentration. Nature 268:747–749Google Scholar
  105. Riesgo-Escovar J, Woodard C, Gaines P, Carlson J (1992) Development and organization of the Drosophila olfactory system: an analysis using enhancer traps. J Neurobiol 23:947–964Google Scholar
  106. Robertson HM (1983) Chemical stimuli eliciting courtship by males in Drosophila melanogaster. Experientia 39:333–335Google Scholar
  107. Rodrigues V (1988) Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Brain Res 453:299–307Google Scholar
  108. Rodrigues V, Pinto L (1989) The antennal glomerulus as a functional unit of odor coding in Drosophila melanogaster. In: Singh RN, Straufeld NJ (eds) Neurobiology of sensory systems. Plenum Press, New York London, pp 387–393Google Scholar
  109. Rodrigues V, Siddiqi O (1978) Genetic analysis of chemosensory pathway. Proc Indian Acad Sci 87B: 147–160Google Scholar
  110. Rospars JP (1983) Invariance and sex-specific variations of the glomerular organization in the antennal lobes of a moth, Mamestra brassicae and a butterfly, Pieris brassicae. J Comp Neurol 220:80–96Google Scholar
  111. Rospars JP (1988) Structure and development of the insect antennodeutocerebral system. Int J Insect Morphol Embryol 17:243–294Google Scholar
  112. Rubin GM (1988) Drosophila melanogaster as an experimental organism. Science 240:1453–1459Google Scholar
  113. Rubin GM (1991) Signal transduction and the fate of the R7 photoreceptor. Trends Genet 7:372–377Google Scholar
  114. Schimidt-Ott U, Gonzalez Gaitan M, Jäckle H, Technau GM (1993) Embryonic head phenotype of Drosophila “gap gene” mutants. In: Elsner N, Heisenberg M (eds) Gene-brain-behaviour (abstract). (Proceedings 21st Göttingen Neurobiology Conference). Thieme, Stuttgart New York, p 132Google Scholar
  115. Schneider D (1957) Electrophysiological investigation on the antennal receptors of the silk moth during chemical and mechanical stimulation. Experientia 13:89–91Google Scholar
  116. Shanbhag SR, Singh RN (1992a) Functional implications of the projections of neurons from individual labellar sensillum of Drosophila melanogaster as revealed by neuronal-marker horseradish peroxidase. Cell Tissue Res 267:273–282Google Scholar
  117. Shanbhag SR, Singh RN (1992b) Functional morphology of sensory organs and the discovery of the peripheral synapses in the legs of Drosophila. In: Singh RN (ed) Nervous systems: principles of design and function. Wiley Eastern, New Delhi, pp 389–415Google Scholar
  118. Shiraishi A, Tanabe Y (1974) The proboscis extension response and tarsal and labellar chemosensory hairs in the blowfly. J Comp Physiol 92:161–179Google Scholar
  119. Siddiqi O (1983) Olfactory neurogenetics of Drosophila. In: Chopra VL, Joshi BC, Sharma RP, Bawal HC (eds) Genetics: new frontiers, vol 3. Oxford University Press, London New York, pp 242–261Google Scholar
  120. Siddiqi O (1987) Neurogenetics of olfaction in Drosophila melanogaster. Trends Genet 3:137–142Google Scholar
  121. Siddiqi O (1991) Olfaction in Drosophila. Chem Senses 3:79–96Google Scholar
  122. Siddiqi O, Rodrigues V (1980) Genetic analysis of a complex chemoreceptor. In: Siddiqi O, Babu P, Hall LM, Hall JC (eds) Development and neurobiology of Drosophila. Plenum Press, New York, pp 347–359Google Scholar
  123. Singh RN (1992) Neuroarchitecture of the thoracic leg neuromeres of Drosophila melanogaster. In: Singh RN (ed) Nervous systems: principles of design and function. Wiley Eastern, New Delhi, pp 131–144Google Scholar
  124. Singh RN, Nayak S (1985) Fine structure and primary sensory projections of sensilla on the maxillary palp of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 14:291–306Google Scholar
  125. Singh RN, Singh K (1984) Fine structure of the sensory organs of Drosophila melanogaster Meigen larva (Diptera: Drosophilidae). Int J Insect Morphol Embryol 13:255–273Google Scholar
  126. Steinbrecht RA (1989) The fine structure of thermo-/hygrosensitive sensilla in the silkmoth Bombyx mori: receptor membrane substructure and sensory cell contacts. Cell Tissue Res 255:49–57Google Scholar
  127. Stengl M, Hatt H, Breer H (1992) Peripheral processes in insect olfaction. Annu Rev Physiol 54:665–681Google Scholar
  128. Stocker RF (1977) Gustatory stimulation of a homeotic mutant appendage, Antennapedia, in Drosophila melanogaster. J Comp Physiol [A] 115:351–361Google Scholar
  129. Stocker RF (1979) Fine structural comparison of the antennal nerve in the homeotic mutant Antennapedia with the wild-type antennal and second leg nerves of Drosophila melanogaster. J Morphol 160:209–222Google Scholar
  130. Stocker RF, Gendre N (1988) Peripheral and central nervous effects of lozenge 3, a Drosophila mutant lacking basiconic antennal sensilla. Dev Biol 127:12–27Google Scholar
  131. Stocker RF, Gendre N (1989) Courtship behavior of Drosophila, genetically and surgically deprived of basiconic sensilla. Behav Genet 19:371–385Google Scholar
  132. Stocker RF, Lawrence PA (1981) Sensory projections from normal and homeoetically transformed antennae in Drosophila. Dev Biol 82:224–237Google Scholar
  133. Stocker RF, Schorderet M (1981) Cobalt filling of sensory projections from internal and external mouthparts in Drosophila. Cell Tissue Res 216:513–523Google Scholar
  134. Stocker RF, Singh RN, Schorderet M, Siddiqi O (1983) Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 232:237–248Google Scholar
  135. Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in D. melanogaster. Cell Tissue Res 262:9–34Google Scholar
  136. Stocker RF, Gendre N, Lienhard MC, Link B (1992) Drosophila olfaction: structural, behavioral, developmental, and genetic approach. In: Singh RN (ed) Nervous systems: principles of design and function. Wiley Eastern, New Delhi, pp 351–372Google Scholar
  137. Stocker RF, Gendre N, Batterham P (1993) Genetic analysis of the lozenge gene complex of Drosophila melanogaster: the antennal phenotype. J Neurogenet 9:29–53Google Scholar
  138. Störtkuhl KF, Hofbauer A, Keller V, Gendre N, Stocker RF (1994) Analysis of immunocytochemical staining patterns in the antennal system of Drosophila melanogaster. Cell Tissue Res 275:27–38Google Scholar
  139. Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New YorkGoogle Scholar
  140. Tanouye MA, Wyman, RJ (1980) Motor outputs of giant nerve fiber in Drosophila. J Neurophysiol 44:405–421Google Scholar
  141. Taylor BJ (1989) Sexually dimorphic neurons of the terminalia of Drosophila melanogaster. II. Sex-specific axonal arborizations in the central nervous system. J Neurogenet 5:193–213Google Scholar
  142. Technau GM (1992) Experimentelle Ansätze zum Studium der Entwicklung des Zentralnervensystems von Drosophila. Verh Dtsch Zool Ges 85.2:111–131Google Scholar
  143. Tissot M (1992) Prolifération cellulaire dans les lobes antennaires du cerveau de Drosophila melanogaster. Diploma thesis, University of FribourgGoogle Scholar
  144. Van der Wolk FM, Koerten HK, Van der Starre H (1984) The external morphology of contact-chemoreceptive hairs of files and the motility of the tips of these hairs. J Morphol 180:37–54Google Scholar
  145. Venard R, Stocker RF (1991) Behavioral and electroantennogram analysis of olfactory stimulation in lozenge: a Drosophila mutant lacking antennal basiconic sensilla. J Insect Behav 4:683–705Google Scholar
  146. Venard R, Antony C, Jallon JM (1989) Drosophila chemoreceptors. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum Press, New York London, pp 377–385Google Scholar
  147. Venkatesh S, Singh RN (1984) Sensilla on the third antennal segment of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 13:51–63Google Scholar
  148. Waldrop B, Christensen TA, Hildebrand JG (1987) GABA-mediated synaptic inhibition of projection neurons in the antennal lobe of the sphinx moth, Manduca sexta. J Comp Physiol [A] 161:23–32Google Scholar
  149. Wieczorek H, Wolff G (1989) The labellar sugar receptor of Drosophila. J Comp Physiol [A] 164:825–834Google Scholar
  150. Wilczek M (1967) The distribution and neuroanatomy of labellar sense organs of the blowfly Phormia regina Meigen. J Morphol 122:175–201Google Scholar
  151. Wolbarsht ML, Dethier VG (1958) Electrical activity in the chemoreceptors of the blowfly. I. Responses to chemical and mechanical stimulation. J Gen Physiol 42:393–12Google Scholar
  152. Yetman S, Pollack GS (1986) Central projections of labellar taste hairs in the blowfly, Phormia regina Meigen. Cell Tissue Res 245:555–561Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Reinhard F. Stocker
    • 1
  1. 1.Institute of ZoologyUniversity of FribourgFribourgSwitzerland

Personalised recommendations