Anatomy and Embryology

, Volume 160, Issue 3, pp 239–252 | Cite as

Innervation of the liver in guinea pig and rat

  • W. Metz
  • W. G. Forssmann


The adrenergic innervation of rat and guinea pig liver is investigated using the glyoxylic-acid — paraformaldehyde method for fluorescent microscopical demonstration of adrenergic nerves and electron microscopy. The nerve distribution in the parenchyma of both animals is compared. The distribution of the liver nerves as detected with fluorescence microscopy is confirmed electron microscopically. The two species exhibit fundamental differences in their liver innervation:
  1. (1)

    In the guinea pig, a rich innervation is found in the trias as well as in the parenchyma. Many nerves traverse the entire liver lobules and may end near the central vein. The guinea pig hepatocyte innervation seems to be uniformly adrenergic. Electron microscopy shows that the varicosities of these nerves mostly form close contacts to the hepatocytes but also to other hepatic intralobular cells.

  2. (2)

    In the rat, the liver nerves are as a rule restricted to the triads, running mainly with smooth muscle containing blood vessels. It rarely happens that nerves penetrate into the lobule and come into contact with the peripherally located hepatocytes.


Key words

Liver Innervation Adrenergic nerves Guinea pig Rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi A (1974) Afferent neural unit of the hepatic branch of the vagus nerve (abstract) Physiol Soc Jap J 36:310Google Scholar
  2. Alexander WF (1940) The innervation of the biliary system. J Comp Neurol 72:357–370Google Scholar
  3. Anufriev BT, Eletsky YK, Smitten NA (1973) Gistochimiceskoje issledovanije adrenergi-ceskoi innervazii peceni. Biull Eksp Biol Med 75:106–109Google Scholar
  4. Axelsson S, Björklund A, Falck B, Lindvall O, Svensson LA (1973) Glyoxylic acid condensation: A new fluorescence method for the histochemical demonstration of biogenic monoamines. Acta Physiol Scand 89:57–62Google Scholar
  5. Azarova AM (1967) On intraorgan innervation of the liver. Arkh Anat Gistol Embriol 52:73–77Google Scholar
  6. Battenberg ELF, Bloom FE (1975) A rapid, simple and more sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid induced fluorescence. I. Specifity. Psychopharmacol Commun 1:3–13Google Scholar
  7. Berkeley HJ (1883) Studies in the histology of the liver. I. The intrinsic nerves. Anat Anz 8:769–783Google Scholar
  8. Black IB, Reis DJ (1971) Cholinergic regulation of hepatic tyrosine transaminase activity. J Physiol (London) 213:421–433Google Scholar
  9. Blouin A, Côté MG (1973) Cartographie de l'innervation sympathetique des lobes, gauche et médians du foie du rat. Rev Can Biol 32:187–211Google Scholar
  10. Burkel WE (1970) The fine structure of the terminal branches of the hepatic arterial system in rats Anat Rec 167:329–350Google Scholar
  11. Donath T, Ungvary G (1970) Beiträge zur monoaminergischen Innervation der Leber. Verh Anat Ges 68, Anat Anz 120:325–328Google Scholar
  12. Donath T, Ungvary G (1975) Neurohistochemical changes in the liver of guinea pigs following ligation of the common bile duct. Exp Mol Pathol 22:29–34Google Scholar
  13. Edwards AV (1971) The glycogenolytic response to stimulation of the splanchnic nerves in adrenalectomized calves, sheep, dogs, cats, and pigs. J Physiol (London) 213:744–759Google Scholar
  14. Edwards AV, Silver M (1970) The glycogenolytic response to stimulation of the splanchnic nerves in adrenalectomized calves. J Physiol (London) 211:109–124Google Scholar
  15. Edwards AV, Silver M (1972) The hyperglycaemic response to stimulation of the hepatic sympathetic innervation in adrenalectomized cats and dogs. J Physiol (London) 220:697–710Google Scholar
  16. Edwards AV, Silver M, (1972) Comparison of the hyperglycaemic and glycogenolytic responses to catecholamines with those to stimulation of the hepatic sympathetic innervation in the dog. J Physiol (London) 233:571–593Google Scholar
  17. Elias H, Petty D (1953) Terminal distribution of the hepatic artery. Anat Rec 116:9–17Google Scholar
  18. Falck B, Hillarp N-A, Thieme G, Thorp A (1962) Fluorescence of catecholamines, and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354Google Scholar
  19. Falck B, Ingemansson S, Nobin A, Rosengren E (1975) The adrenergic innervation of the human liver. Acta Endocrinol (Kbh) Suppl 199:181Google Scholar
  20. Forssmann WG (1977) Innervation von Leber und Pankreas bei Primaten. Acta Anat (Basel) 99:267–268Google Scholar
  21. Forssmann WG, Ito S (1975) Innervation of hepatocytes in the free shrew. In: E Yamada (ed) Proceedings of the 10th International Congress of Anatomists. Science Council of Japan, Tokyo, p 430Google Scholar
  22. Forssmann WG, Ito S (1977) Hepatocyte innervation in primates. J Cell Biol 74:299–313Google Scholar
  23. Forssmann WG, Ito S, Weihe E, Aoki A, Dym M, Fawcett DW (1977) An improved perfusion fixation method for the testis. Anat Rec 188:307–314Google Scholar
  24. Holbrook ML (1882) The termination of the nerves in the liver. In: Proceedings of the american society of microscopists, pp 95–100Google Scholar
  25. Hori M, Austen WG, McDermott WV (1965a) Role of hepatic arterial blood flow and hepatic nerves on renal circulation and function. II. Chronic studies in the dog. Ann Surg 162:949–958Google Scholar
  26. Hori M, Austen WG, McDermott WV (1965b) Role of hepatic arterial blood flow and hepatic nerves on renal circulation and function. I. Acute studies in the dog. Ann Surg 162:849–862Google Scholar
  27. Järhult J, Falck B, Ingemansson S, Nobin A (1978) The functional importance of sympathetic nerves to the liver and endocrine pancreas. Ann Surg In pressGoogle Scholar
  28. Jones AL, Spring-Mills E (1977) The liver and Gallbladder. In: L Weiss and RO Greep (eds) Histology. McGraw-Hill, Inc, New York, pp 701–746Google Scholar
  29. Karnovsky MJ (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. J Cell Biol 51: 146aGoogle Scholar
  30. Karupu VJ (1961) Some data on the peripheral nervous system of the liver. Arkh Anat Histol Embriol 41:83–90Google Scholar
  31. Korolkow P (1893) Über die Nervenendigungen in der Leber. Anat Anz 8:751–753Google Scholar
  32. Kuntz A (1945) Innervation of the biliary system. In: The autonomic nervous system, pp 258–262, 3rd edition. Lea and Felbiger, PhiladelphiaGoogle Scholar
  33. Latarjet A, Bonnet P, Bonniot A (1920) Les nerfs du foie et des voies biliares. Lyon Chir 17: 13–35Google Scholar
  34. Lindvall O, Björklund A (1974) The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons. Histochemistry 39:97–127Google Scholar
  35. Lindvall O, Björklund A, Hökfelt T, Ljungdhal A (1973) Application of the glyoxylic acid method to vibratome sections for improved visualization of central catecholamine neurons. Histochemie 35:31–38Google Scholar
  36. Luft JH (1973) Embedding media-old and new. In: Koehler JH (ed) Advanced techniques in biological electron microscopy. Springer-Verlag New York, New York, pp 1–34Google Scholar
  37. MacCallum AG (1887) The termination of nerves in the liver. Quart J Microsc Sci 27:439–460Google Scholar
  38. Mazzanti L, del Tacca M, Breschi MC (1977) Histochemical studies of noradrenergic innervation of the liver in untreated and daunomycin-pretreated guinea pig. Histochemistry 53:17–24Google Scholar
  39. Metz W, Forssmann WG (1979, in press) Comparative morphology of liver innervation. In: Leber-Symposium BaselGoogle Scholar
  40. Mikhail Y, Saleh AL (1961) Intrinsic nerve fibers in the liver parenchyma. Anat Rec 141:317–323Google Scholar
  41. Miura IM (1884) Beiträge zur Histologie der Leber. Virchows Arch 97:142–148Google Scholar
  42. Nesterowsky M (1975) Über die Nerven der Leber. Virchows Arch 63:4421Google Scholar
  43. Niijima A (1969) Afferent impulse discharges from glucoreceptors in the liver of the guinea pig. Ann NY Acad Sci 157:690–700Google Scholar
  44. Niijima A, Fukuda A (1973) Release of glucose from perfused liver preparation in response to stimulation of the splanchnic nerves in the toad. Jap J Physiol 23:497–508Google Scholar
  45. Nobin A, Falck B, Ingemansson S, Järhult J, Rosengren E (1977) Organization and function of the sympathetic innervation of human liver. Acta Physiol Scand Suppl 452:103–106Google Scholar
  46. Nobin A, Baumgarten HG, Falck B, Ingemansson S, Moghimzadeh E, Rosengren E (1978) Organization of the sympathetic innervation in liver tissue from monkey and man. Cell Tissue Res 195:371–380Google Scholar
  47. Pflüger E (1869) Über die Abhängigkeit der Leber von dem Nervensystem. Pflügers Arch ges Physiol 2:459–491Google Scholar
  48. Pfuhl W (1932) Die Nerven der Leber In: W v Möllendorf (ed) Handbuch der Mikroskopischen Anatomie des Menschen, Vol. 5/2, Magen-Leber-Gallenwege. Springer-Verlag, Berlin, pp 406–408Google Scholar
  49. Rautu L, Ciplea A (1972) Hepatic catecholamines. Fluorescence microscopy. Rev Roum Physiol 9:439–441Google Scholar
  50. Reilly FD, McCuskey A, McCuskey R (1977) Intrahepatic distribution of nerves in the rat. Anat Rec 187:690–691Google Scholar
  51. Reilly FD, McCuskey A, McCuskey R (1978) Intrahepatic distribution of nerves in the rat. Anat Rec 191:55–68Google Scholar
  52. Biegele L (1928) Über das feinere Verhalten der Nerven in der Leber von Mensch und Säugetier. Z Mikr Anat Forsch 14:73–98Google Scholar
  53. Russu VIG, Vaida A, Dumitrascu D, Lucaciu O (1961) Beiträge zur Innervation der Leber. Acta Anat (Basel) 44:70–79Google Scholar
  54. Shimazu T (1967) Glycogen synthetase activity in liver: Regulation by the autonomic nerves. Science 156:1256–1257Google Scholar
  55. Shimazu T, Amakawa A (1968a) Regulation of glycogen metabolism in liver by the autonomic nervous system. II. Neural control of glycogenolytic enzymes. Biochem Biophys Acta 165:335–348Google Scholar
  56. Shimazu T, Amakawa A (1968b) Regulation of glycogen metabolism in liver by the autonomic nervous system. III Differential effects of sympathetic nerve stimulation and of catecholamines on liver phosphorylase. Biochim Biophys Acta 165:349–356Google Scholar
  57. Shimazu T, Fujimoto T, (1971) Regulation of glycogen metabolism in liver by the autonomic nervous system. IV. Neural control of glycogen biosynthesis. Biochem Biophys Acta 252:18–27Google Scholar
  58. Sisto LD, Robecchi A (1969) L'innervazione adrenergetica del fegato. Boll Soc Ital Biol Sper 45:555–556Google Scholar
  59. Skaaring P, Bierring F (1976) On the intrinsic innervation of normal rat liver. Histochemical and scanning electron microscopical studies. Cell Tissue Res 171:141–155Google Scholar
  60. Skaaring P, Bierring F (1977) Further evidence for the existence of intralobular nerves in the rat liver. Cell Tissue Res 177:287–290Google Scholar
  61. Tsai TL (1958) A histological study of sensory nerves in the liver. Acta Neuroveg 17:354–385Google Scholar
  62. Ungvary G, Donath T (1969) On the monoaminergic innervation of the liver. Acta Anat (Basel) 72:446–459Google Scholar
  63. Uno H (1977) Catecholaminergic terminals in the perisinusoidal spaces of the hepatic acini and adrenal cortex of macaques (abstract). Anat Rec 187:735Google Scholar
  64. Venable J, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408Google Scholar
  65. Wallraff J (1969) Innervation des Leberparenchyms. In: W v Möllendorf, Bargmann W (eds) Handbuch der Mikroskopischen Anatomie des Menschen. Vol 5/4. Die Leber-Gallengangsystem, Gallenblase und Galle. Springer-Verlag, Berlin, pp 214–218Google Scholar
  66. Wang H-W (1953) Recherches sur les terminations nerveuses dans le foie. Gastroenterologia 79:220–226Google Scholar
  67. Yamada E (1965) Some observations on the nerve terminal on the liver parenchymal cell of the mouse as revealed by electron microscopy. Okajimas Folia Anat Jap 40:663–677Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • W. Metz
    • 1
  • W. G. Forssmann
    • 1
  1. 1.Department of AnatomyUniversity of HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations