Anatomy and Embryology

, Volume 178, Issue 1, pp 1–13 | Cite as

The epidermal permeability barrier

  • Lukas Landmann
Review Article

Summary

The permeability barrier of the skin which prevents transcutaneous water loss and penetration of harmful drugs from the environment is localized in the horny layer of the epidermis. Multiple lipid bilayers obstructing the intercellular space of the stratum corneum fulfill this function. In contrast to cellular membranes consisting predominantly of phospholipids, these lamellae contain mostly ceramides, cholesterol and free fatty acids. The lamellae are derived from the contents of lamellar granules (LGs) which are synthesized in the viable epidermal layers by the keratinocytes. LGs display stacks of small disks each of which represents a flattened vesicle or liposome. Prior to terminal differentiation, the disks are exocytosed into the intercellular space and fused to form uninterrupted sheetlike lamellae. The singular lipid composition of LG-disks and of stratum corneum-lamellae reflects the multistage process of barrier formation. It also renders these structures well suited to provide for a barrier function.

Key words

Bilayer Epidermis Lamellar granules Lipids Liposomes Permeability Stratum corneum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham W, Wertz PW, Downing DT (1985) Linoleate-rich acylglucosylceramides of pig epidermis: structure determination by proton magnetic resonance. J Lipid Res 26:761–765Google Scholar
  2. Abraham W, Wertz PW, Landmann L, Downing DT (1987a) Oacylglucosylceramides and O-acylceramides cause aggregation and stacking of stratum corneum lipid liposomes. J Invest Dermatol 88:474Google Scholar
  3. Abraham W, Wertz PW, Landmann L, Downing DT (1987b) Stratum corneum lipid liposomes: Calcium-induced transformation into lamellar sheets. J Invest Dermatol 88:212–214Google Scholar
  4. Al-Saidan SMH, Winfield AJ, Selkirk AB (1987) Effect of preheating on the permeability of neonatal rat stratum corneum to alkanols. J Invest Dermatol 89:430–453Google Scholar
  5. Blank IH (1953) Further observations on factors which influence the water content of the stratum corneum. J Invest Dermatol 45:249–256Google Scholar
  6. Bowser PA, Nugteren DH, White RJ, Houtsmuller UMT, Prottey C (1985) Identification, isolation and characterization of epidermal lipids containing linoleic acid. Biochim Biophys Acta 834:419–128Google Scholar
  7. Breathnach AS, Goodman T, Stolinski C, Gross M (1973) Freezefracture replication of cells of stratum corneum of human epidermis. J Anat 114:65–81Google Scholar
  8. Breathnach AS, Wyllie LMA (1966) Osmium-iodide positive granules in spinous and granular layers of guinea pig epidermis. J Invest Dermatol 47:58–60Google Scholar
  9. Caputo R, Pelucchetti D (1977) The junctions of normal human epidermis. A freeze-fracture study. J Ultrastruct Res 61:44–61Google Scholar
  10. Chandrasekaran SK, Shaw JE (1978) Factors influencing the percutaneous absorption of drugs. Curr Probl Dermatol 7:142–155Google Scholar
  11. Collander R, Barlund H (1930) Permeability in Chara ceratophylla. II Permeability to nonelectrolytes. Acta Botan Fenn 11:1–114Google Scholar
  12. Cox P, Squier CA (1986) Variations in lipids in different layers of porcine epidermis. J Invest Dermatol 87:741–744Google Scholar
  13. Davson H, Danielli JF (1952) The permeability of natural membranes (2nd edn). Cambridge University Press, CambridgeGoogle Scholar
  14. Deamer DW, Bramhall J (1986) Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids 40:167–188Google Scholar
  15. Downing DT, Stewart ME, Wertz PW, Colton SW, Abraham W, Strauss JS (1987) Skin lipids: and update. J Invest Dermatol 88:2s-6sGoogle Scholar
  16. Elias PM (1981) Lipids and the epidermal permeability barrier. Arch Dermatol Res 270:95–117Google Scholar
  17. Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80:44s-49sGoogle Scholar
  18. Elias PM, Brown BE (1978) The mammalian cutaneous permeability barrier: defective barrier function in essential fatty acid deficiency correlates with abnormal intercellular lipid deposition. Lab Invest 39:574–583Google Scholar
  19. Elias PM, Friend DS (1975) The permeability barrier in mammalian epidermis. J Cell Biol 65:180–191Google Scholar
  20. Elias PM, Goerke J, Friend DS (1977) Mammalian epidermal barrier lipids: composition and influence on structure. J Invest Dermatol 69:535–546Google Scholar
  21. Elias PM, McNutt NS, Friend DS (1977) Membrane alterations during cornification of mammalian squameous epithelia: a freeze-fracture, tracer, and thin-section study. Anat Rec 189:577–594Google Scholar
  22. Elias PM, Brown BE, Fritsch P, Goerke J, Gray M, White RJ (1979) Localization and composition of lipids in neonatal mouse stratum granulosum and stratum corneum J Invest Dermatol 73:339–348Google Scholar
  23. Epstein EH, Williams ML, Elias PM (1981) Steroid sulfatase, X-linked ichthyosis, and stratum corneum cell cohesion. Arch Dermatol 117:761–763Google Scholar
  24. Farbman AI (1964) Electron microscope study of a small cytoplasmic structure in rat oral epithelium. J Cell Biol 21:491–497Google Scholar
  25. Fleischer R (1877) Untersuchungen über das Resorptionsvermögen der menschlichen Haut. Habilitationsschrift, ErlangenGoogle Scholar
  26. Franks NP, Lieb WR (1979) The structure of lipid bilayers and the effects of general anaesthetics. J Mol Biol 133:469–500Google Scholar
  27. Frei FRI, Sheldon H (1961) A small granular component of the cytoplasm of keratinizing epithelia. J Biophys Biochem Cytol 11:719–724Google Scholar
  28. Frithiof L, Wersäll J, (1965) A highly ordered structure in keratinizing human oral epithelium. J Ultrastruct Res 12:371–379Google Scholar
  29. Golden GM, Guzek DB, Harris RR, McKie JE, Potts RO (1986) Lipid thermotropic transitions in human stratum corneum. J Invest Dermatol 86:255–259Google Scholar
  30. Goldsmith LA, Baden HP (1970) A uniquely oriented epidermal lipid. Nature 225:1052–1053Google Scholar
  31. Grant CWM, Melhorn IE, Florio E, Barber KR (1987) A long chain spin label for glycosphingolipid studies: transbilayer fatty acid interdigitation of lactosyl ceramide. Biochim Biophys Acta 909:169–177Google Scholar
  32. Gray GM, White RJ (1978) Glycosphingolipids and ceramides in human and pig epidermis. J Invest Dermatol 70:336–341Google Scholar
  33. Gray GM, Yardley HJ (1975) Different populations of pig epidermal cells: isolation and lipid composition. J Lipid Res 16:441–447Google Scholar
  34. Gray GM, White RJ, Williams RH, Yardley HJ (1982) Lipid composition of the superficial stratum corneum cells of the epidermis. Br J Dermatol 106:59–63Google Scholar
  35. Grayson S, Johnson-Winegar AG, Wintroub BU, Isseroff RR, Epstein EH, Elias PM (1985) Lamallar body-enriched fractions from neonatal mice: preparative techniques and partial characterization. J Invest Dermatol 85:289–294Google Scholar
  36. Grice KA (1980) Transepidermal water loss. In: Jarrett A (ed) The physiology and pathophysiology of the skin. Vol 6. Academic Press, London, pp 2116–2146Google Scholar
  37. Grubauer G, Finegold KR, Elias PM (1987) Relationship of epidermal lipogenesis to cutaneous barrier function. J Lipid Res 28:746–752Google Scholar
  38. Hansen HJ, Jensen B (1985) Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and α-linolenate. Biochim Biophys Acta 834:357–363Google Scholar
  39. Hashimoto K (1971) Cementsome, a new interpretation of the membrane coating granule. Arch Dermatol Forsch 240:349–364Google Scholar
  40. Hayward AF (1978) Ultrastructural changes in contents of membrane-coating granules after extrustion from epithelial cells of hamster cheek pouch. Cell Tissue Res 187:323–331Google Scholar
  41. Hayward AF (1979) Membrane-coating granules. Int Rev Cytol 59:97–127Google Scholar
  42. Homalle A (1853) Experiences physiologiques sur l'absorption par le tégument externe chez l'homme dans le bain. Union Méd 7:462–463Google Scholar
  43. Imokawa G, Akasaki S, Hattori M, Yoshizuka N (1986) Selective recovery of deranged water-holding properties by stratum corneum lipids. J Invest Dermatol 87:758–761Google Scholar
  44. Kalina M, Pease DC (1977) The preservation of ultrastructure in saturated phosphatidylcholines by tannic acid in model systems and type II pneumocytes. J Cell Biol 74:726–741Google Scholar
  45. King PJ (1962) Evaporation. Chem Proc Eng 43:69–73Google Scholar
  46. Kligman AM (1964) The biology of the stratum corneum. In: Montagna W, Lobitz WC (eds) The epidermis. Academic Press, New York, pp 387–433Google Scholar
  47. Lampe MA, Williams ML, Elias PM (1983) Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res 24:131–140Google Scholar
  48. Landmann L (1980) Lamellar granules in mammalian, avian and reptilian epidermis. J Ultrastruct Res 72:245–263Google Scholar
  49. Landmann L (1984) The epidermal permeability barrier. Comparison between in vivo and in vitro lipid structures. Eur J Cell Biol 33:258–264Google Scholar
  50. Landmann L (1986) Epidermal permeability barrier: transformation of lamellar granule-disks into intercellular sheets by a membrane-fusion process, a freeze-fracture study. J Invest Dermatol 87:202–209Google Scholar
  51. Landmann L, Wertz PW, Downing DT (1984) Acylglucosylceramide causes flattening and stacking of liposomes; an analogy for assembly of the epidermal permeability barrier. Biochim Biophys Acta 778:412–418Google Scholar
  52. Lavker RM (1976) Membrane coating granules: the fate of the discharged lamellae. J Ultrastruct Res 55:79–86Google Scholar
  53. Mackee GM, Sulzberger MB, Herrmann F, Baer RL (1945) Histologic studies on percutaneous penetration with special reference to the effect of vehicles. J Invest Dermatol 6:43–61Google Scholar
  54. Mackenzie IC (1969) Ordered structure of the stratum corneum of the mammalian skin. Nature 222:881–883Google Scholar
  55. Madison KC, Wertz PW, Strauss JS, Downing DT (1986) Lipid composition of cultured murine keratinocytes. J Invest Dermatol 87:253–259Google Scholar
  56. Madison KC, Swartzendruber DC, Wertz PW, Downing DT (1987) Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J Invest Dermatol 88:714–718Google Scholar
  57. Madison KC, Swartzendruber DC, Wertz PW, Downing DT (in press) Lamellar granule extrusion and stratum corneum intercellular lamellae in murine kerationcyte cultures. J Invest DermatolGoogle Scholar
  58. Marks R, Barton SP (1983) The significance of size and shape of corneocytes. In: Marks R, Plewig G (eds) Stratum corneum. Springer, Berlin, pp 161–170Google Scholar
  59. Martinez RI, Peters A (1971) Membrane-coating granules and membrane modifications in keratinizing epithelia. Am J Anat 130:93–120Google Scholar
  60. Matoltsy AG (1966) Membrane-coating granules of the epidermis. J Ultrastruct Res 15:510–515Google Scholar
  61. Matoltsy AG, Downes AM, Sweeney TM (1968) Studies of the epidermal water barrier. Part II. Investigation of the chemical nature of the water barrier. J Invest Dermatol 50:19–26Google Scholar
  62. Matoltsy AG, Parakkal FF (1965) Membrane-coating granules of keratinizing epithelia. J Cell Biol 24:297–307Google Scholar
  63. Melton JL, Wertz PW, Swartzendruber DC, Downing DT (1987) Effects of essential fatty acid deficiency on epidermal O-acylsphingolipds and transepidermal water loss in young pigs. Biochim Biophys Acta 921:191–197Google Scholar
  64. Menon GK, Grayson S, Elias PM (1985) Ionic calcium reservoirs in mammalian epidermis. Ultrastructural localization by ioncapture cytochemistry. J Invest Dermatol 84:508–512Google Scholar
  65. Michaels AS, Chandrasekaran SK, Shaw JE (1975) Drug permeation through human skin: theory and in vitro experimental measurement. A I Ch E J 21:985–996Google Scholar
  66. Nugteren DH, Christ-Hazelhof E, van der Beek A, Houtsmüller UMT (1985) Metabolism of linoleic acid and other essential fatty acids in the epidermis of the rat. Biochim Biophys Acta 834:429–436Google Scholar
  67. Odland GF (1960) A submicroscopic granular component in human epidermis. J Invest Dermatol 34:11–15Google Scholar
  68. Odland GF, Holbrook K (1981) The lamellar granules of the epidermis. Curr Probl Dermatol 9:29–49Google Scholar
  69. Olah I, Röhlich P (1966) Phospholipidgranula im verhornenden Oesophagusepithel. Z Zellforsch 73:205–219Google Scholar
  70. Papahadjopoulos D, Jacobson K, Nir S, Isac T (1973) Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concening the effect of temperature and cholesterol. Biochim Biophys Acta 311:330–348Google Scholar
  71. Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–451Google Scholar
  72. Prottey C (1976) Essential fatty acids and the skin. Br J Dermatol 94:579–587Google Scholar
  73. Prottey C, Hartop PJ, Black JG, McCormack JI (1976) The repair of impaired barrier function in rats by cutaneous application of linoleic acid. Br J Dermatol 94:13–21Google Scholar
  74. Ranasinghe AW, Wertz PW, Downing DT, MacKenzie IC (1986) Lipid composition of cohesive and desquamated corneocytes from mouse ear skin. J Invest Dermatol 86:187–190Google Scholar
  75. Rein H (1924) Experimentelle Studien über Elektroendosmose an überlebender menschlicher Haut. Z Biol 81:125–140Google Scholar
  76. Rothman JE, Lenard J (1977) Membrane asymmetry. Science 195:743–753Google Scholar
  77. Rothman S (1943) The principles of percutaneous absorption. J Lab Clin Med 28:1305–1321Google Scholar
  78. Rothman S (1954) Percutaneous absorption. In: Rothman S (ed) Physiology and biochemistry of the skin. Chicago University Press, Chicago, pp 26–59Google Scholar
  79. Schaefer H, Zesch A, Stüttgen G (1982) Skin permeability. Springer, BerlinGoogle Scholar
  80. Scheuplein RJ, Blank IH (1971) Permeability of the skin: a review of major concepts. Physiol Rev 51:702–747Google Scholar
  81. Scheuplein RJ, Bronough RL (1983) Percutaneous absorption. In: Goldsmith LA (ed) Biochemistry and physiology of the skin, vol II, Oxford University Press, New York, pp1255–1295Google Scholar
  82. Schmidt RF, Thews G (1983) Physiologie des Menschen. 21st edn, Springer, BerlinGoogle Scholar
  83. Schreiner E, Wolff K (1969) Permeabilität des epidermalen Interzellularraums für kleinmolekulares Protein. Arch Klin Exp Dermatol 235:78–88Google Scholar
  84. Schwenkenbecker A (1904) Das Absorptionsvermögen der Haut. Arch Anat Physiol 1904121–165Google Scholar
  85. Selby CC (1957) An electron microscopic study of thin sections of human skin. II. Superficial cell layers of footpad epidermis. J Invest Dermatol 29:131–149Google Scholar
  86. Sha'afi RI (1981) Permeability for water and other polar molecules. In: Bonting SL, de Pont JJHHM (eds) Membrane transport. Elsevier, Amsterdam, pp 29–60Google Scholar
  87. Smith HW, Clawes HA, Marshall EK (1919) Mustard gas. IV The mechanisms of absorption by the skin. J Pharmacol 13:1–30Google Scholar
  88. Smith WP, Christensen MS, Nacht S, Gans EH (1982) Effect of lipids on the aggregation and permeability of human stratum corneum. J Invest Dermatol 78:7–12Google Scholar
  89. Squier CA (1973) The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res 43:160–177Google Scholar
  90. Squier CA (1982) Zinc iodide-osmium staining of membrane-coating granules in keratinized and non-keratinized mammalian oral epithelium. Archs Oral Biol 27:377–382Google Scholar
  91. Squier CA, Rooney L (1976) The permeability of keratinized and nonkeratinized oral epithelium to lanthanum in vivo. J Ultrastruct Res 54:286–295Google Scholar
  92. Stoughton RB, Clendenning RW, Kruse D (1960) Percutaneous absorption of nicotinic acid and derivatives. J Invest Dermatol 35:337–341Google Scholar
  93. Stein WD (1981) Permeability for lipophilic molecules. In: Bonting SL, de Pont JJHHM (eds) Membrane transport. Elsevier, Amsterdam, pp 1–28Google Scholar
  94. Swartzendruber DC, Wertz PW, Madison KC Downing DT (1987) Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol 88:709–713Google Scholar
  95. Wahlberg JE (1973) Percutaneous absorption. Curr Probl Dermatol 5:1–36Google Scholar
  96. Weinstock M, Wilgram GF (1970) Fine-structural observations on the formation and enzymatic activity of keratinosomes in mouse tongue filiform papillae. J Ultrastruct Res 30:262–274Google Scholar
  97. Wertz PW (1986) Lipids of keratinizing tissues. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the Integument. Vol 2, Vertebrates. Springer, Berlin, pp 815–823Google Scholar
  98. Wertz PW, Downing DT (1982) Glycolipids in mammalian epidermis: structure and function in the water barrier. Science 217:1261–1262Google Scholar
  99. Wertz PW, Downing DT (1983a) The acylglucosylceramides of pig epidermis: structure determination. J Lipid Res 24:753–758Google Scholar
  100. Wertz PW, Downing DT (1983b) The glucosyceramides of pig epidermis: structure determination. J Lipid Res 24:1135–1139Google Scholar
  101. Wertz PW, Downing DT (1983c) Ceramides of pig epidermis: structure determination. J Lipid Res 24:759–765Google Scholar
  102. Wertz PW, Cho ES, Downing DT (1983) Effect of essential fatty acid deficiency on the epidermal sphingolipids of the rat. Biochim Biophys Acta 753:350–355Google Scholar
  103. Wertz PW, Downing DT, Freinkel RK, Traczyk TN (1984) Sphingolipids of the stratum corneum and lamellar granules of fetal rat epidermis. J Invest Dermatol 83:193–195Google Scholar
  104. Wertz PW, Miethke MC, Long SA, Strauss JS, Downing DT (1985) The composition of the ceramides from human stratum corneum and from comedones. J Invest Dermatol 84:410–412Google Scholar
  105. Wertz PW, Abraham W, Landmann L, Downing DT (1986) Preparation of liposomes from stratum corneum lipids. J Invest Dermatol 87:582–584Google Scholar
  106. Wilgram GF (1965) Das Keratinosom: ein Faktor im Verhornungsprozess der Haut. Hautarzt 16:377–379Google Scholar
  107. Winsor T, Burch GE (1944) Differential roles of layers of human epigastric skin on diffusion rate of water. Arch Int Med 74:428–436Google Scholar
  108. Wolff K, Holubar K (1967) Odland-Körper, (Membrane-coating granules keratinosomen) als epidermale Lysosomen. Arch Klin Exp Dermatol 231:1–19Google Scholar
  109. Wolff K, Wolff-Schreiner E (1976) Trends in electron microscopy of skin. J Invest Dermatol 67:39–57Google Scholar
  110. Wolff-Schreiner E (1977) Ultrastructural cytochemistry of the epidermis. Int J Dermatol 16:77–102Google Scholar
  111. Yardley HJ (1983) Epidermal lipids. In: Goldsmith LA (ed) Biochemistry and physiology of the skin, vol I Oxford University Press, New York, pp 363–381Google Scholar
  112. Yardley HJ, Goldstein DJ (1976) Changes in dry weight and projected area of human epidermal cells undergoing keratinization as determined by scanning interference microscopy. Br J Dermatol 95:621–626Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Lukas Landmann
    • 1
  1. 1.Department of AnatomyUniversity of BaselBaselSwitzerland

Personalised recommendations