Acta Neuropathologica

, Volume 85, Issue 1, pp 23–30 | Cite as

Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer's disease cases

  • P. R. Hof
  • C. Bouras
  • L. Buée
  • A. Delacourte
  • D. P. Perl
  • J. H. Morrison
Regular Papers

Summary

Head trauma has been associated with the occurrence of Alzhiemer's disease and plays a clear role in the etiopathogenesis of the boxers encephalopathy referred to as dementia pugilistica. Neurofibrillary tangles (NFT), one of the pathological hallmarks of Alzheimer's disease are observed in very high densities in the brains of former professional boxers suffering from dementia pugilistica. In Alzheimer's disease, NFT display striking regional and laminar distribution patterns that have been correlated with the localization of neurons forming specific corticocortical connections. In dementia pugilistica cases, NFT were concentrated in the superficial layers in the neocortex, whereas in Alzheimer's disease they predominated in the deep layers. Thus, the association cortex of brains from dementia pugilistica patients demonstrated an inverse NFT distribution as compared to Alzheimer's disease. This finding suggests that a more circumscribed population of cortical pyramidal neurons might be affected in dementia pugilistica than in Alzheimer's disease.

Key words

Alzheimer's disease Dementia pugilistica Head trauma Neurofibrillary tangle Tau proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams CWM, Bruton CJ (1989) The cerebral vasculature in dementia pugilistica. J Neurol Neurosurg Psychiatry 52:600–604Google Scholar
  2. 2.
    Allsop D, Haga S, Bruton C, Ishii T, Roberts GW (1990) Neurofibrillary tangles in some cases of dementia pugilistica share antigens which amyloid β-protein of Alzheimer's disease. Am J Pathol 136:255–260Google Scholar
  3. 3.
    Borenstein Graves A, White E, Koepsell TD, Reifler BV, Van Belle G, Larson EB, Raskind M (1990) The association between head trauma and Alzheimer's disease. Am J Epidemiol 131:491–501Google Scholar
  4. 4.
    Bouras C, Hof PR, Guntern R, Morrison JH (1990) Down's syndrome (DS), dementia pugilistica (DP), and Alzheimer's disease (AD): a quantitative neuropathologic comparison. Proc Soc Neurosci 16:1264Google Scholar
  5. 5.
    Brandenburg W, Hallervorden J (1954) Dementia pugilistica mit anatomischem Befund. Virchows Arch Pathol Anat Physiol Klin Med 325:680–709Google Scholar
  6. 6.
    Casson IR, Siegel O, Sham R, Campbell EA, Tarlau M, DiDomenico A (1984) Brain damage in modern boxers. J Am Med Assoc 251:2663–2667Google Scholar
  7. 7.
    Claude H, Cuel J (1939) Démence pré-sénile post-traumatique après fracture du crâne: considérations médico-légales. Ann Med Leg Criminol Police Sci Med Soc Toxicol 19:173–184Google Scholar
  8. 8.
    Clinton J, Ambler MW, Roberts GW (1991) Post-traumatic Alzheimer's disease: preponderance of a single plaque type. Neuropathol Appl Neurobiol 17:69–74Google Scholar
  9. 9.
    Constantinidis J, Tissot R (1967) Lésions neurofibrillaires d'Alzheimer généralisées sans plaques séniles. Schweiz Arch Neurol Neurochir Psychiatr 100:117–130Google Scholar
  10. 10.
    Corsellis JAN (1978) Posttraumatic dementia. Aging (NY) 7:125–133Google Scholar
  11. 11.
    Corsellis JAN, Brierley JB (1959) Observations on the pathology of insidious dementia following head injury. J Ment Sci 105:714–720Google Scholar
  12. 12.
    Corsellis JAN, Bruton CJ, Breeman-Browne D (1973) The aftermath of boxing. Psychol Med 3:270–303Google Scholar
  13. 13.
    Dale GE, Leigh PN, Luthert P, Anderton BH, Roberts GW (1991) Neurofibrillary tangles in dementia pugilistica are ubiquitinated. J Neurol Neurosurg Psychiatry 54:116–118Google Scholar
  14. 14.
    Défossez A, Beauvillain JC, Delacourte A, Mazzuca M (1988) Alzheimer's disease: a new evidence for common epitopes between microtubule associated protein tau and paired helical filaments (PHF): demonstration at the elctron microscope by a double immunogold labelling. Virchows Arch [A] 413:141–145Google Scholar
  15. 15.
    Delacourte A, Flament S, Dibe EM, Hublau P, Sablonnière B, Hémon B, Scherrer V, Défossez A (1990) Pathological proteins tau 64 and 69 are specifically expressed in the somatodendritic domain of the degenerating cortical neurons during Alzheimer's disease: demonstration with a panel of antibodies against tau proteins. Acta Neuropathol 80:111–117Google Scholar
  16. 16.
    Flament S, Delacourte A, Delaère P, Duyckaerts C, Hauw JJ (1990) Correlation between microscopical changes and tau 64 and 69 biochemical detection in senile dementia of the Alzheimer type. Tau 64 and 69 are reliable markers of the neurofibrillary degeneration. Acta Neuropathol 80:212–215Google Scholar
  17. 17.
    Flament S, Delacourte A, Verny M, Hauw JJ, Javoy-Agid F (1991) Abnormal tau proteins in progressive supranuclear palsy-Similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol 81:591–596Google Scholar
  18. 18.
    French LR, Schuman LM, Mortimer JA, Hutton JT, Boatman RA, Christians B (1985) A case-control study of dementia of the Alzheimer type. Am J Epidemiol 121:414–421Google Scholar
  19. 19.
    Gallays F (1971) Silver staining of Alzheimer's neurofibrillary changes by mean of physical development. Acta Morphol Acad Sci Hung 19:1–8Google Scholar
  20. 20.
    Garruto RM, Yase Y (1986) Neurodegenerative disorders of the Western Pacific: the search for mechanisms of pathogenesis. Trends Neurosci 9:368–371Google Scholar
  21. 21.
    Globus JH (1927) The Cajal and Hortega glia staining methods. A new step in the preparation of formaldehyde-fixed material. Arch Neurol Psychiatry 18:263–271Google Scholar
  22. 22.
    Grahmann H, Ule G (1957) Beitrag zur Kenntnis der chronischen cerebralen Krankheitsbilder bei Boxern (Dementia pugilistica and traumatische Boxer-Encephalopathie). Psychiatr Neurol 134:261–283Google Scholar
  23. 23.
    Guntern R, Bouras C, Hof PR, Vallet PG (1992) An improved thioflavine S method for neurofibrillary tangles and senile plaques in Alzheimer's disease. Experientia 48:8–10Google Scholar
  24. 24.
    Guterman A, Smith RW (1987) Neurological sequelae of boxing. Sports Med 4:194–210Google Scholar
  25. 25.
    Heyman A, Wilkinson WE, Stafford JA, Helms MJ, Sigmon AH, Weinberg T (1984) Alzheimer's disease: a study of epidemiological aspects. Ann Neurol 15:335–341Google Scholar
  26. 26.
    Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease. II. Primary and secondary visual cortex. J Comp Neurol 301:55–64Google Scholar
  27. 27.
    Hof PR, Bouras C, Constantinidis J, Morrison JH (1990) Selective disconnection of specific visual association pathways in cases of Alzheimer's disease presenting with Balint's syndrome. J Neuropathol Exp Neurol 49:168–184Google Scholar
  28. 28.
    Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease. I. Superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54Google Scholar
  29. 29.
    Hof PR, Knabe R, Bovier P, Bouras C (1991) Neuropathological observations in a case of autism presenting with self injury behavior. Acta Neuropathol 82:321–326Google Scholar
  30. 30.
    Hof PR, Perl DP, Loerzel AJ, Morrison JH (1991) Neurofibrillary tangle distribution in the cerbral cortex of parkinsonism-dementia cases from Guam: differences with Alzheimer's disease. Brain Res 564:306–313Google Scholar
  31. 31.
    Hof PR, Delacourte A, Bouras C (1992) Distribution of cortical neurofibrillary tangles in progressive supranuclear palsy: a quantitative analysis of six cases. Acta Neuropathol 84:45–51Google Scholar
  32. 32.
    Hof PR, Charpiot A, Delacourte A, Buée L, Purohit D, Perl DP, Bouras C (1992) Distribution of neurofibrillary tangles and senile plaques in the cerebral cortex in postencephalitic parkinsonism. Neurosci Lett 139:10–14Google Scholar
  33. 33.
    Ito H, Hirano A, Yen SH, Kato S (1991) Demonstration of β amyloid-containing neurofibrillary tangles in parkinsonismdementia complex on Guam. Neuropathol Appl Neurobiol 17:365–373Google Scholar
  34. 34.
    Jones EG, Wise SP (1977) Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys. J Comp Neurol 175:391–438Google Scholar
  35. 35.
    Jordan BD (1987) Neurologic aspects of boxing. Arch Neurol 44:453–459Google Scholar
  36. 36.
    Kim KS, Miller DL, Sapienza VG, Chen CJ, Vai C, Grundke-Iqbal I, Curry JR, Wisniewski HM (1988) Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci Res Commun 2:121–130Google Scholar
  37. 37.
    Lampert PW, Hardman JM (1984) Morphological changes in the brains of boxers. J Am Med Assoc 251:2676–2679Google Scholar
  38. 38.
    Leininger BE, Gramling SE, Farrell AD, Kreutzer JS, Peck III EA (1990) Neuropsychological deficits in symptomatic minor head injury after concussion and mild concussion. J Neurol Neurosurg Psychiatry 53:293–296Google Scholar
  39. 39.
    Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distribution of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices. J Neurosci 7:1799–1808Google Scholar
  40. 40.
    Martland HS (1928) Punch drunk. J Am Med Assoc 91:1103–1107Google Scholar
  41. 41.
    Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4:2757–2763Google Scholar
  42. 42.
    Millspaugh JA (1937) Dementia pugilistica. US Navy Med Bull 35:297–303Google Scholar
  43. 43.
    Molgaard CA, Stanford EP, Morton DJ, Ryden LA, Schubert KR, Golbeck AL (1990) Epidemiology of head trauma and neurocognitive impairment in a multi-ethnic population. Neuroepidemiology 9:233–242Google Scholar
  44. 44.
    Morrison JH, Hof PR, Campbell MJ, De Lima AD, Voigt T, Bouras C, Cox K, Young WG (1990) Cellular pathology in Alzheimer's disease: implications of corticocortical disconnection and differential vulnerability. In: Rapoport SR, Petit H, Leys D, Christen Y (eds) Imaging, cerebral topography and Alzheimer's disease. Springer, Berlin Heidelberg New York Tokyo, pp 19–40Google Scholar
  45. 45.
    Mortimer JA, French LR, Hutton JT, Schuman LM (1985) Head injury as a risk factor for Alzheimer's disease. Neurology 35:264–267Google Scholar
  46. 46.
    Mortimer JA, Van Duijn CM, Chandra V, Fratiglioni L, Graves AB, Heyman A, Jorm AF, Kokmen E, Kondo K, Rocca WA, Shalat SL, Soininen H, Hofman A (1991) Head trauma as a risk factor of Alzheimer's disease: a collaborative re-analysis of case-control studies. Int J Epidemiol 20 [Suppl 2]: S28-S35Google Scholar
  47. 47.
    Mutrux S (1947) Diagnostic différentiel histologique de la maladie d'Alzheimer et de la démence sénile-Pathophobie de la zone de projection corticale. Monatsschr Psychiatr Neurol 113:100–107Google Scholar
  48. 48.
    Payne EE (1968) Brains of boxers. Neurochirurgia 11:173–188Google Scholar
  49. 49.
    Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer's disease. Proc Natl Acad Sci USA 82:4531–4534Google Scholar
  50. 50.
    Quandt J, Sommer H (1965) Beitrag zur Pathogenese der Encephalopathia pugilistica. Psychiat Neurol Med Psychol 17:448–451Google Scholar
  51. 51.
    Roberts AH (1969) Brain damage in boxers — A study of the prevalence of traumatic encephalopathy among ex-professional boxers. Pitman, LondonGoogle Scholar
  52. 52.
    Roberts GW (1988) Immunocytochemistry of neurofibrillary tangles in dementia pugilistica and Alzheimer's disease: evidence for common genesis. Lancet II:1456–1458Google Scholar
  53. 53.
    Roberts GW, Allsop D, Bruton C (1990) The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 53:373–378Google Scholar
  54. 54.
    Roberts GW, Whiwell HL, Acland PL, Bruton CJ (1990) Dementia in a punch-drunk wife. Lancet 335:918–919Google Scholar
  55. 55.
    Roberts GW, Gentleman SM, Lynch A, Graham DI (1991) βA4 amyloid protein deposition in brain after head trauma. Lancet 338:1422–1423Google Scholar
  56. 56.
    Rogers J, Morrison JH (1985) Quantitative morphology and regional and laminar distribution of senile plaques in Alzheimer's disease. J Neurosci 5:2801–2808Google Scholar
  57. 57.
    Rudelli R, Strom JO, Welch PT, Ambler MW (1982) Posttraumatic premature Alzheimer's disease-Neuropathologic findings and pathogenetic considerations. Arch Neurol 39:570–575Google Scholar
  58. 58.
    Spillane JD (1962) Five boxers. Br Med J 2:1205–1210Google Scholar
  59. 59.
    Tokuda T, Ikeda S, Yanagisawa N, Ihara Y, Glenner GG (1991) Re-examination of ex-boxers' brains using immunohistochemistry with antibodies to amyloid β-protein and tau protein. Acta Neuropathol 82:280–285Google Scholar
  60. 60.
    Unterharnscheidt F, Sellier K (1971) Vom Boxen: Mechanik, Pathomorphologie und Klinik der traumatischen Schäden des ZNS bei Boxern. Fortschr Neurol Psychiatr 39:109–151Google Scholar
  61. 61.
    Vallet PG, Guntern R, Hof PR, Golaz J, Delacourte A, Robakis NK, Bouras C (1992) A comparative study of histological and immunohistochemical methods for neurofibrillary tangles and senile plaques in Alzheimer's disease. Acta Neuropathol 83:170–178Google Scholar
  62. 62.
    Van Essen DC (1985) Functional organization of the primate visual cortex. In: Peters A, Jones EG (eds) Cerebral Cortex, vol 3. Plenum, New York, pp 259–329Google Scholar
  63. 63.
    Yamaguchi H, Ishiguro K, Shoji M, Yamazaki T, Nakazato Y, Ihara Y, Hirai S (1990) Amyloid β/A4 protein precursor is bound to neurofibrillary tangles in Alzheimer-type dementia. Brain Res 537:318–322Google Scholar
  64. 64.
    Yamaguchi H, Nakazato Y, Shoji M, Okamoto K, Ihara Y, Morimatsu M, Hirai S (1991) Secondary deposition of beta amyloid within extracellular neurofibrillary tangles in Alzheimer-type dementia. Am J Pathol 138:699–705Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • P. R. Hof
    • 1
    • 2
  • C. Bouras
    • 1
    • 5
  • L. Buée
    • 2
    • 6
  • A. Delacourte
    • 2
    • 6
  • D. P. Perl
    • 1
    • 3
    • 4
  • J. H. Morrison
    • 1
    • 2
  1. 1.Fishberg Research Center for NeurobiologyMount Sinai School of MedicineNew YorkUSA
  2. 2.Department of Geriatrics and Adult DevelopmentMount Sinai School of MedicineNew YorkUSA
  3. 3.Department of PathologyMount Sinai School of MedicineNew YorkUSA
  4. 4.Department of PsychiatryMount Sinai School of MedicineNew YorkUSA
  5. 5.Department of PsychiatryUniversity of Geneva School of Medicine, IUPG Bel-AirChêne-BourgSwitzerland
  6. 6.INSERM U156LilleFrance
  7. 7.Fishberg Research Center for NeurobiologyMount Sinai School of MedicineNew YorkUSA

Personalised recommendations