Acta Neuropathologica

, Volume 86, Issue 3, pp 265–274 | Cite as

Neurofibrillary tangles of Guamanian amyotrophic lateral sclerosis, parkinsonism-dementia and neurologically normal Guamanians contain a 4-to 4.5-kilodalton protein which is immunoreactive to anti-amyloid β/A4-protein antibodies

  • D. C. Guiroy
  • M. Mellini
  • M. Miyazaki
  • C. Hilbich
  • J. Safar
  • R. M. Garruto
  • R. Yanagihara
  • K. Beyreuther
  • D. C. Gajdusek
Regular Papers

Summary

Neurofibrillary tangles (NFT), one of the neurodegenerative features of Alzheimer's disease, Down's syndrome and normal aging, is a constant, widespread neuropathological finding in Guamanian amyotrophic lateral sclerosis (ALS), parkinsonism-dementia (PD) and in neurologically normal Guamanians, dying of causes other than ALS and PD. NFT in brain tissue sections of patients with Guamanian ALS and PD were immunoreactive to antibodies directed against a 43-amino acid synthetic peptide homologous to amyloid β/A4-protein (anti-SP43) associated with Alzheimer's disease. NFT extracted from frozen brain tissues of Guamanian patients with ALS and PD and from tissues of neurologically normal Guamanians were congophilic and birefringent. By negative-stain electron microscopy, NFT preparations contained bundles and/or isolated single, straight, unpaired filaments in Guamanian AlS and occasionally pairing of filaments in neurologically normal Guamanians, measuring 5–20 nm in diameter. Formic acid digestion of NFT preparations, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion high-pressure liquid chromatography, showed a protein with an apparent molecular mass of 4-to 4.5-kDa, which by Western blot analysis was immunoreactive to anti-SP43. Immunoabsorption of purified NFT or SP43 with anti-SP43 abolished immunostaining. Our study corroborate previous data that amyloid β/A4-protein is present in NFT in Guamanian PD. Furthermore, our data indicate that amyloid β/A4-protein is present in NFT in brain tissues of patients with Guamanian ALS and in neurologically normal Gumananians, suggesting a common mechanism of amyloidogenesis with NFT formation in Alzheimer's disease and normal brain aging.

Key words

Alzheimer's disease Down's syndrome Paired helical filaments Straight filaments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allsop D, Landon M, Kidd M, Lowe JS, Reynolds GP, Gardner A (1986) Monoclonal antibodies raised against a subsequence of senile plaque cores, plaque periphery and cerebrovascular amyloid in Alzheimer's disease. Neurosci Lett 68:252–256Google Scholar
  2. 2.
    Allsop D, Haga S, Bruton C, Ishii T, Roberts GW (1990) Neurofibrillary tangles in some cases of dementia pugilistica share antigens with amyloid β/A4-protein of Alzheimers disease. Am J Pathol 136:255–260Google Scholar
  3. 3.
    Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiatr 64:146–148Google Scholar
  4. 4.
    Anderson FH, Richardson EP Jr, Okazaki H, Brody JA (1979) Neurofibrillary degeneration on Guam. Frequency in Chamorros and non Chamorros with no known neurological disease. Brian 102:65–77Google Scholar
  5. 5.
    Anderton BH, Breinburg D, Downes MJ, Green PJ, Tomlinson BE, Ulrich J, Wood JN, Kahn J (1982) Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature 298:84–86Google Scholar
  6. 6.
    Behrouz N, Defossez A, Delacourte A, Hublau P, Mazzuca M (1989) An antiserum to the N-terminal subsequence of the Alzheimer amyloid beta-protein does not react with neurofibrillary tangles. J Gerontol 44:156–159Google Scholar
  7. 7.
    Beyreuther K, Multhaup G, Simms G, Pottgiesser J, Schröder W, Martins RN, Masters CL (1986) Neurofibrillary tangles of Alzheimer's disease and “aged” Down's syndrome contain the same protein as the amyloid plaque cores and blood vessels. Disc Neurosci 3:68–80Google Scholar
  8. 8.
    Bondareff W, Wischik CM, Novak M, Amos WB, Klug A, Roth M (1990) Molecular analysis of neurofibrillary degeneration in Alzheimer's disease. Am J Pathol 137:711–723Google Scholar
  9. 9.
    Brody JA, Kurland LT (1973) Amyotrophic lateral sclerosis and parkinsonism-dementia in Guam. In: Spillane JD (ed) Tropical Neurology. Oxford University Press, London, pp 355–375Google Scholar
  10. 10.
    Brody JA, Hirano A, Scott RM (1971) Recent neuropathologic observations in amyotrophic lateral sclerosis and parkinsonism-dementia on Guam. Neurology 21:528–536Google Scholar
  11. 11.
    Brown P, Coker-Vann M, Pomeroy K, Franko M, Asher DM, Gibbs CJ Jr, Gajdusek DC (1986) Diagnosis of Creutzfeldt-Jakob disease by Western blot identification of marker protein in human brain tissue. N Engl J Med 314:547–551Google Scholar
  12. 12.
    Castaño EM, Frangione B (1989) Human amyloidosis, Alzheimer disease and related disorders. Lab Invest 58:122–132Google Scholar
  13. 13.
    Chen KM, Chase TN (1986) Parkinsonism-dementia. Handb Clin Neurol 39:167–183Google Scholar
  14. 14.
    Chen L (1981) Neurofibrillary change on Guam. Arch Neurol 38:16–18Google Scholar
  15. 15.
    Clark-Lewis I, Aebersold R, Ziltener H, Schrader JW, Hood LE, Kent SBH (1986) Automated chemical synthesis of a protein growth factor for hemopoeitic cells, interleukin-3. Science 231:134–139Google Scholar
  16. 16.
    Cole GM, Wu K, Timiras PS (1985) A culture model for age-related human neurofibrillary pathology. Int J Dev Neurosci 3:23–32Google Scholar
  17. 17.
    Cork LC, Sternberger NH, Sternberger LA, Casanova MF, Struble RG, Price DL (1986) Phosphorylated neurofilament antigens in neurofibrillary tangles in Alzheimer's disease. J Neuropathol Exp Neurol 45:56–64Google Scholar
  18. 18.
    Crother RA (1991) Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proc Natl Acad Sci USA 88:2288–2292Google Scholar
  19. 19.
    Delacourte A, Defossez A (1986) Alzheimer's disease: Tau proteins, the promoting factors of microtubule assembly, are major compoents of paired helical filaments. J Neurol Sci 76:173–186Google Scholar
  20. 20.
    Garruto RM (1989) Cellular and molecular mechanisms of neuronal degeneration: amyotrophic lateral sclerosis, parkinsonism-dementia, and Alzheimer disease. Am J Hum Biol 1:529–543Google Scholar
  21. 21.
    Gentleman SM, Perl D, Allsop D, Clinton J, Royston MC, Roberts GW (1991) β(A4)-amyloid protein and parkinsonism-dementia complex of Guam. Lancet 337:55–56Google Scholar
  22. 22.
    Glenner GG, Wong CW (1984) Alzheimer's disease and Down's syndrome: sharing of unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135Google Scholar
  23. 23.
    Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau is a component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089Google Scholar
  24. 24.
    Guiroy DC, Miyazaki M, Multhaup G, Fischer P, Garruto RM, Beyreuther K, Masters CL, Gibbs CJ Jr, Gajdusek DC (1987) Amyloid of neurofibrillary tangles of Guamanian parkinsonism-dementia and Alzheimer disease share identical amino acid sequence. Proc Natl Acad Sci USA 84:2073–2077Google Scholar
  25. 25.
    Guiroy DC, Liberski P, Papierz W, Yanagihara R, Gajdusek DC (1991) Brain amyloid in a 32-year old man with progressive dementia contain amyloid β-protein. Acta Neuropathol 82:523–526Google Scholar
  26. 26.
    Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gas-liquid solid-phase peptide and protein sequenator. J Biol Chem 256:7990–7997Google Scholar
  27. 27.
    Hirano A (1965) Pathology of amyotrophic lateral sclerosis. In: Gajdusek DC, Gibbs CJ Jr, Alpers M (eds) Slow, latent and temperate virus infections. NINDB Monograph No. 2, US Department of Health, Education and Welfare, Washington D.C., pp 23–27Google Scholar
  28. 28.
    Hirano A (1973) Progress in the pathology of motor neuron disease. In: Zimmerman HM (ed) Progress in neuropathology, Vol 2. Grune and Stratton, Inc, New York, pp 181–215Google Scholar
  29. 29.
    Hirano A, Kurland LT, Krooth RS, Lessell S (1961) Parkinsonism-dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain 84:642–661Google Scholar
  30. 30.
    Hirano A, Malamud N, Kurland LT (1961) Parkinsonism-dementia complex, an endemic disease on the island of Guam. II. Pathological features. Brain 84:662–679Google Scholar
  31. 31.
    Hirano A, Malamud N, Elizan TS, Kurland LT (1966) Amyotrophic lateral sclerosis and parkinsonism-dementia on Guam. Further pathological studies. Arch Neurol 15:35–51Google Scholar
  32. 32.
    Hyman BT, Van Hoesen GW, BeyreutherK, Masters CL (1989) A4 amyloid protein immunoreactivity is present in Alzheimer disease neurofibrillary tangles. Neurosci Lett 101:352–355Google Scholar
  33. 33.
    Ito H, Hirano A, Yen SH, Kato S (1991) Demonstration of beta amyloid protein-containing neurofibrillary tangles in parkinsonism-dementia complex on Guam. Neuropathol Appl Neurobiol 17:365–373Google Scholar
  34. 34.
    Iwazaki V, Yamamoto H, Iizuka H, Yamamoto T, Konno H (1987) Suppression of neurofilament degradation by proteinase inhibitors in experimental spinal cord injury. Brain Res 406:99–104Google Scholar
  35. 35.
    Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57: 230–235Google Scholar
  36. 36.
    Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein (τ) is a major component of paired helical filaments in Alzheimer's disease. Proc Natl Acad Sci USA 83:4044–4048Google Scholar
  37. 37.
    Kurland LT, Mulder DW (1954) Epidemiologic investigations of amyotrophic lateral sclerosis. Neurology 4:355–448Google Scholar
  38. 38.
    Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685Google Scholar
  39. 39.
    Lenard J, Rodinson AB (1967) Use of hydrogen fluoride in Merrifield solid-phase peptide synthesis. J Am Chem Soc 181–182Google Scholar
  40. 40.
    Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid plaque cores and blood vessels. EMBO J 4:2757–2763Google Scholar
  41. 41.
    Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer's disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249Google Scholar
  42. 42.
    Mitchell AR, Erickson BW, Ryabtsev MN, Hodges RS, Merrifield RB (1976) Tert-butoxycarbonylaminoacyl-4-(oxymethyl)-phenylacetamidomethyl-resin, a more acid-resistant support for solid-phase peptide synthesis. J Am Chem Soc 89:7357–7362Google Scholar
  43. 43.
    Narang HK, Codd AA (1979) A slow speed centrifugation technique for the preparation of grids for direct virus examination by electron microscopy. J Clin Pathol 32:304–305Google Scholar
  44. 44.
    Oltersdorf T, Fritz LC, Schenk DB, Lieberburg I, Johnson KL, Beattie EC, Ward PJ, Blacher RW, Dovey HF, Sinha S (1989) The secreted form of the Alzheimer's amyloid precursor protein with the Kunitz domain is protease nexin-II. Nature 341:144–147Google Scholar
  45. 45.
    Reed DM, Brody JA (1975) Amyotrophic lateral sclerosis and parkinsonism-dementia on Guam 1945–1972. I. Descriptive epidemiology. Am J Epidemiol 101:287–301Google Scholar
  46. 46.
    Rodgers-Johnson P, Garruto RM, Yanagihara R, Chen KM, Gajdusek DC, Gibbs CJ Jr (1986) Amyotrophic lateral sclerosis and parkinsonism-dementia in Guam: a 30-year evaluation of clinical and neuropathological trends. Neurology 36:7–13Google Scholar
  47. 47.
    Roots BI (1983) Neurofilament accumulation induced in synapses by Leupeptin. Science 221:971–972Google Scholar
  48. 48.
    Shankar SK, Yanagihara R, Garruto RM, Gundke-Iqbal I, Kosik KS, Gajdusek DC (1989) Immunocytochemical characterization of neurofibrillary tangles in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Ann Neurol 25:146–151Google Scholar
  49. 49.
    Spillantini MG, Goedert M, Jakes R, Klug A (1990) Topographical relationship between β-amyloid and tau protein epitopes in tangle-bearing cells in Alzheimer disease. Proc Natl Acad Sci USA 87:3252–3256Google Scholar
  50. 50.
    Sternberger L (1986) The unlabeled antibody peroxidase-antiperoxidase (PAP) method. In: Immunocytochemistry. John Wiley and Sons, New York, pp 90–200Google Scholar
  51. 51.
    Tabaton M, Cammarata S, Mancardi G, Manetto V, Autilio-Gambetti L, Perry G, Gambetti P (1991) Ultrastructural localization of β-amyloid, τ and ubiquitin epitopes in extracellular neurofibrillary tangles. Proc Natl Acad Sci USA 88:2089–2102Google Scholar
  52. 52.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci USA 76:4350–4354Google Scholar
  53. 53.
    Van Nostrand WE, Wagner SL, Suzuki M, Choi BH, Farrow JS, Geddes JW, Cotman CW, Cunningham DD (1989) Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid β-protein precursor. Nature 341:546–549Google Scholar
  54. 54.
    Wong CW, Quaranta V, Glenner GG (1985) Neuritic plaques and cerebrovascular amyloid in Alzheimer's disease are antigenetically related. Proc Natl Acad Sci USA 82:8729–8732Google Scholar
  55. 55.
    Yamaguchi H, Ishiguro K, Shoji M, Yamazaki T, Nakasato Y, Ihara Y, Hirai S (1990) Amyloid β/A4-protein precursor is bound to neurofibrillary tangles in Alzheimer-type dementia. Brain Res 537:318–322Google Scholar
  56. 56.
    Yanaihara N, Yanaihara C, Mochizuki T, Iwahara K, Fujita T, Iwanaga T (1981) Immunoreactive GRP. Peptides 2 [Suppl 2]:185–191Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • D. C. Guiroy
    • 1
  • M. Mellini
    • 2
  • M. Miyazaki
    • 1
  • C. Hilbich
    • 3
  • J. Safar
    • 1
  • R. M. Garruto
    • 1
  • R. Yanagihara
    • 1
  • K. Beyreuther
    • 3
  • D. C. Gajdusek
    • 1
  1. 1.Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaUSA
  2. 2.Chemical Synthesis and Analysis LaboratoryProgram Resources, Inc.FrederickUSA
  3. 3.Center for Molecular BiologyUniversity of Heidelberg (ZMBH)HeidelbergGermany

Personalised recommendations