Bulletin of Volcanology

, Volume 56, Issue 2, pp 121–132 | Cite as

Sedimentological analysis of the tephra from the 12–15 August 1991 eruption of Hudson volcano

  • Roberto A. Scasso
  • Hugo Corbella
  • Pedro Tiberi


The tephra fallout from the 12–15 August 1991 explosive eruption of Hudson volcano (Cordillera de los Andes, 45°54′ S-72°58′ W; Chile) was dispersed on a narrow, elongated ESE sector of Patagonia, covering an area (on land) of more than 100 000 km2. The elongated shape of the deposit, together with the relatively coarse mean and median values of the particles at a considerable distance from the vent, were the result of strong winds blowing to the southeast during the eruption. The thickness of the fall deposit decreases up to 250 km ESE from Hudson volcano, where it begins to thicken again. Secondary maxima are well developed at approximately 500 km from the vent. Secondary maxima, together with grainsize bimodality in individual layers and in the bulk deposit suggest that particle aggregation played an important role in tephra sedimentation. The fallout deposit is well stratified, with alternating fine-grained and coarsegrained layers, which is probably a result of strong eruptive pulses followed by relatively calm periods and/or changes in the eruptive style from plinian to phreatoplinian. The tephra is mostly composed of juvenile material: the coarse mode (mostly pumice) shifts to finer sizes with distance from the volcano; the fine mode (mostly glass shards) is always about 5/6 phi. Glass shards and pumice are mostly light gray to colorless. However, considerable amounts of dark, poorly vesiculated, blocky shards, suggest a hydromagmatic component in the eruption. A land-based tephra volume of 4.35 km3 was estimated, and a total volume of 7.6 km3 arose from an extrapolation, which took into account the probable volume sedimented in the sea. Bulk density ranges from 0.9 to 1.10 gr/cm3 (beyond 110 km from the vent). Rather uniform density values measured in crushed samples (2.45–2.50 gr/cm3 at all distances from the vent) reveal a relatively homogeneous composition. Mean and median sizes decrease rapidly up to 270 km from the vent; beyond that point they are more or less constant, whereas the maximum size (1 phi) shows a steady decrease up to 550 km. A concomitant improvement in sorting is observed. This is attributed to sorting due to wind transport combined with particle aggregation at different times and distances from the vent. The Hudson tephra fallout shares some strikingly similar features with the Mount St. Helens (18 May 1980) and Quizapu (1932) eruptions.

Key words

tephra sedimentology tephra fallout plinian eruption Argentine Hudson secondary maximum grainsize bimodality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arias N, Arizmendi A, Bitschene P, Fernández M, Giacosa R, Grizinik M, Márquez M, Nillni A (1992) La erupción del volcán Hudson y sus efectos inmediatos en la Patagonia argentina (Provincia de Santa Cruz). Primera Reunión Argentina de Mineralogía y Metalogenia Actas:9–18Google Scholar
  2. Banks NG, Iven M (1991) Report of the United Nations Mission to Volcán Hudson, Chile, 20 August–15 September 1991. Report, US Geol Surv, Cascades Volcano Observatory, pp 1–61Google Scholar
  3. Bitschene P, Arias N, Arizmendi A, Fernández M, Giacosa R, Grizinik M, Márquez M, Nillni A (1992) The Hudson eruption of August 1991: petrology, ash fall, characteristics and natural disaster assessment. Actas del Octavo Congreso Latinoamericano de Geología 4:209–212. Salamanca, EspañaGoogle Scholar
  4. Brazier S, Sparks RSJ, Carey S, Sigurdsson H, Westgate JA (1983) Bimodal grain size distribution and secondary thickening in airfall ash layers. Nature 301:115–119Google Scholar
  5. Carey S, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from May 18, 1980 eruption of Mount St. Helens volcano. J Geophys Res 87:7061–7072Google Scholar
  6. Carey S, Sigurdsson H, Gardner JE, Criswell W (1990) Variations in column height and magma discharge during the May 18, 1980 eruption of Mount St. Helens. J Volcanol Geotherm Res 43:99–112Google Scholar
  7. Corbella H, Scasso RA, Lucero M, Palacios ME, Tiberi PE, Rial P, Perez D (1991a) Erupción del Volcán Hudson-Agosto de 1991. Efectos sobre el territorio de la Provincia de Santa Cruz. Publicación científica de la Universidad Federal de la Patagonia Austral, Waxen 4:1–15Google Scholar
  8. Corbella H, Scasso RA, Rial P, Palacios ME, Lucero M, Tiberi PE, Pérez D (1991b) Hudson. Bull Global Volcanism Network 16(9):2–3Google Scholar
  9. Corbella H, Gagliardini A, Leis J (1991c) Análisis de los penachos eruptivos del volcán Hudson sobre la Patagonia argentina, Agosto 1991, según imágenes NOAA-AVHRR. V Simposio Latinoamericano de Percepción Remota. SELPER. Cuzco, Perú. AbstractGoogle Scholar
  10. Destéfano MC, Mazzoni MM (1992) Textura superficial y composición de trizas vítreas de la erupción 1991 del volcán Hudson. Cuarta Reunión Argentina de Sedimentología 1:211–218Google Scholar
  11. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167Google Scholar
  12. Fisher RV (1964) Maximum size, median diameter and sorting of tephra. J Geophys Res 69:341–355Google Scholar
  13. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp 1–471Google Scholar
  14. Gagliardini DA, Corbella H, Leis J (1992) Contribution of NOAA-AVHRR data to study the August 1991 Hudson volcano eruption. European International Space Year. Group 4: Remote sensing for environmental monitoring and research management. Session Natural Hazards and Disaster Mitigation. Munich, Germany. AbstractGoogle Scholar
  15. Gilbert JS, Lane SJ, Sparks RSJ (1991a) Particle aggregation controlled by electrical charge in volcanic plumes. US Geol Surv Abstracts, Circular 1065:20Google Scholar
  16. Gilbert JS, Lane SJ, Sparks RSJ, Koyaguchi T (1991b) Charge measurements on particle fallout from a volcanic plume. Nature 349:598–600Google Scholar
  17. Hildreth W, Drake RE (1992) Volcán Quizapu, Chilean Andes. Bull Volcanol 54:93–125Google Scholar
  18. Kittl E (1933) Estudio sobre los fenómenos volcánicos y el material caído durante la erupción del Grupo del “Descabezado” en el mes de abril de 1932. Anales del Museo Nacional de Historia Natural, Buenos Aires 37:321–364Google Scholar
  19. Krumbein WC, Pettijohn FJ (1938) Manual of sedimentary petrography. Appleton-Century-Crofts, New York, London, pp 1–549Google Scholar
  20. Larsson W (1937) Vulkanische Asche vom Ausbruch des chilenischen Vulkans Quizapu (1932) in Argentinien gesammelt. Eine Studie über äolische Differentiation. Geologisches Institut Upsala Bulletin 26:27–52Google Scholar
  21. Mazzoni MM, Destéfano MC (1992) Depositación sineruptiva y reelaboración temprana. Depósitos de caída de ceniza de la erupción 1991 del volcán Hudson. Cuarta Reunión Argentina de Sedimentología Actas 1:203–210 La PlataGoogle Scholar
  22. Naranjo J (1991) Major eruption reported in Chile. EOS Trans Am Geophys Union 72:393–394Google Scholar
  23. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238Google Scholar
  24. Nillni A, Fernández M, Arizmendi A, Arias N, Rodríguez M, Bitschene P (1992) Volcán Hudson: estudio granulométrico y composicional del material piroclástico eyectado. Cuarta Reunión Argentina de Sedimentología Actas 3:73–80. La PlataGoogle Scholar
  25. Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51:1–15Google Scholar
  26. Sarna-Wojicki AM, Shipley S, Waitt R Jr, Dzurisin D, Wood S (1982) Areal distribution, thickness, mass, volume and grainsize of air-fall ash from six major eruptions of 1980. US Geol Surv Prof Pap 1250:577–600Google Scholar
  27. Sparks RSJ, Huang TC (1980) The volcanological significance of deep-sea ash layers associated with ignimbrites. Geol Mag 117:425–436Google Scholar
  28. Walker GPL (1981) Plinian eruptions and their deposits. Bull Volcanol 44:223–240Google Scholar
  29. Wilson L, Huang TC (1979) The influence of shape on the atmospheric settling velocity of volcanic ash particles. Earth Planet Sci Lett 44:311–324Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Roberto A. Scasso
    • 1
  • Hugo Corbella
    • 2
  • Pedro Tiberi
    • 3
  1. 1.CIRGEO (CONICET)Univ. de Buenos AiresBuenos AiresArgentina
  2. 2.MACN (CONICET) Av. A. Gallardo 470 (1405) Buenos AiresUniv. Federal de la Patagonia Austral. CC 177Río GallegosArgentina
  3. 3.Univ. Federal de la Patagonia AustralRío GallegosArgentina

Personalised recommendations