Advertisement

Theoretical and Applied Genetics

, Volume 75, Issue 2, pp 350–356 | Cite as

Dwarfism and male sterility in interspecific hybrids of Epilobium

1. Expression of plastid genes and structure of the plastome
  • U. K. Schmitz
Article

Summary

Reciprocal differences for male sterility, dwarfism and morphological traits have been studied in intra- and interspecific crosses of five Epilobium species. Male sterility occurred in two interspecific hybrids with E. montanum as the male parent while dwarfism has been found to varying degrees in three interspecific crosses with E. watsonni. In contrast to transient differences in plant height and leaf morphology in reciprocal hybrids of the cross between E. hirsutum and E. parviflorum, male sterility and dwarfism persistently occur as reciprocally different traits which may be influenced by determinants of the cytoplasm. The molecular characterization of the plastid DNA of the parental lines and the F1 hybrids indicate that the plastome of male sterile and dwarf plants is identical to that of the female parents. Furthermore, in spite of these developmental disturbances, the expression of plastid genes coding for polypeptides of thylakoid-membrane complexes is unchanged. Thus, it seems unlikely that the genetic compartement of the plastids is responsible for the expression of the male sterile or the dwarfed phenotype.

Key words

Epilobium Male sterility Dwarfism Plastid DNA Gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117–122Google Scholar
  2. Baur E (1909) Das Wesen und die Erblichkeitsverhältnisse der „Varietates albomarginatae Hort.” von Pelargonium zonale. Z Indukt Abstamm Vererbungsl 1:330–351Google Scholar
  3. Carmichael GG (1980) Molecular weight determination of RNA by gel electrophoresis. Electrophoresis 1:78–82Google Scholar
  4. Caspari E (1948) Cytoplasmic inheritance. Adv Genet 2:1–66Google Scholar
  5. Correns C (1909) Vererbungsversuche mit blaß (gelb) grünen und buntblättrigen Sippen bei Mirabilis jalapa, Urtica pilulifera und Lunaria annua. Z Vererbungsl 1:291–329Google Scholar
  6. Göpel G (1970) Plastomabhängige Pollensterilität bei Oenothera. Theor Appl Genet 40:111–116Google Scholar
  7. Hagemann R, Lindenhahn M, Metzlaff M (1985) Extranuclear inheritance: plastid genetics. Prog Bot 47:208–227Google Scholar
  8. Kung SD, Zhu YS, Chen K, Shen GF, Sisson VA (1981) Nicotiana chloroplast genome. II. Chloroplast DNA alteration. Mol Gen Genet 183:20–24Google Scholar
  9. Kytövuori I (1976) Biosystematics of the Epilobium groups Alpinae and Palustriformes (Onagraceae). I. Dwarfism in crosses of the Fennoscandian species. Ann Bot Fenn 13:69–96Google Scholar
  10. Levings CS III (1983) Cytoplasmic male sterility. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering of plants. Plenum, New York, pp 81–92Google Scholar
  11. Michaelis P (1940) Über reziprok verschiedene Sippenbastarde bei Epilobium hirsutum. I. Die reziprok verschiedenen Bastarde der Epilobium hirsutum-Sippe Jena. Z Vererbungsl 78:187–222Google Scholar
  12. Michaelis P (1950) Grundzüge der intraindividuellen Plasmon-Umkombination. Protoplasma 39:260–274Google Scholar
  13. Michaelis P (1951) Plasmavererbung und Heterosis. Z Pflanzenzücht 30:250–275Google Scholar
  14. Michaelis P (1954) Wege und Möglichkeiten zur Analyse des plasmatischen Erbguts. Biol Zentralbl 73:353–399Google Scholar
  15. Michaelis P (1959) The genetical interactions between nucleus and cytoplasm in Epilobium. Exp Cell Res (Suppl) 4:1–9Google Scholar
  16. Michaelis P (1962) Über Zahlengesetzmäßigkeiten plasmatischer Erbträger, besonders der Plastiden. Protoplasma 55:177–231Google Scholar
  17. Michaelis P, von DellinghausenM (1942) Über reziprok verschiedene Sippenbastarde bei Epilobium hirsutum. IV. Weitere Untersuchungen über die genischen Grundlagen der extrem stark gestörten Bastarde der E. hirsutum-Sippe Jena. Z Vererbungsl 80:373–428Google Scholar
  18. Michaelis P, Wertz E (1935) Entwicklungsgeschichtlich-genetische Untersuchungen an Epilobium: VI. Vergleichende Untersuchungen über das Plasmon von Epilobium hirsutum, E. luteum, E. montanum und E. roseum. Z Vererbungsl 70:138–139Google Scholar
  19. Oehlkers F (1964) Cytoplasmic inheritance in the genus Streptocarpus Lindley. Adv Genet 12:329–370Google Scholar
  20. Renner O, Kupper W (1921) Artkreuzungen in der Gattung Epilobium. Ber Dtsch Bot Ges 39:201–206Google Scholar
  21. Schmitz UK (1985) Plastidenvererbung und Organisation des Plastoms bei Arten der Gattung Epilobium. Dissertation, Universität DüsseldorfGoogle Scholar
  22. Schmitz UK, Kowallik KV (1986a) Polymorphism and gene arrangement among plastomes of ten Epilobium species. Plant Mol Biol 7:115–127Google Scholar
  23. Schmitz UK, Kowallik KV (1986b) Plastid inheritance in Epilobium. Curr Genet 11:1–5Google Scholar
  24. Schwemmle B (1962) Über den Einfluß von Kern, Plasma und Plastiden auf die photoperiodische Reaktion einiger Raimannia-Oenotheren. Planta 58:619–646Google Scholar
  25. Schwemmle J (1938) Untersuchungen über das Zusammenwirken von Kern, Plasma und Plastiden, Z Vererbungsl 55:486–660Google Scholar
  26. Synge PM (1956) Royal horticultural society dictionary of gardening. Supplement Clarendon Press, Oxford, pp 318–322Google Scholar
  27. Thomas PS (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201–5205Google Scholar
  28. Vedel F, Malhieu C (1983) Physical and gene mapping of chloroplast DNA from normal and cytoplasmic male sterile (radish cytoplasm) lines of Brassica napus. Curr Genet 7:13–20Google Scholar
  29. Vedel F, Mathieu C, Lebacq P, Ambard-Bretteville F, Remy R, Pelletier G, Renard M, Rousselle P (1982) Comparitive macromolecular analysis of the cytoplasms of normal and cytoplasmic male sterile Brassica napus. Theor Appl Genet 63:255–262Google Scholar
  30. Westhoff P, Nelson N, Bünemann H, Hermann RG (1981) Localization of genes for coupling factor subunits on the spinach plastid chromosome. Curr Genet 4:109–120Google Scholar
  31. Zurawski G, Bottomley W, Whitfeld PR (1982) Structures of the gene for the beta and epsilon subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and overlapping translation stop/start signals. Proc Natl Acad Sci USA 79:6260–6264Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • U. K. Schmitz
    • 1
  1. 1.Botanisches InstitutUniversität DüsseldorfDüsseldorfFederal Republic of Germany

Personalised recommendations