Advertisement

Theoretical and Applied Genetics

, Volume 64, Issue 1, pp 83–90 | Cite as

Isolation and characterization of nitrate reductase-deficient mutants of Arabidopsis thaliana

  • F. J. Braaksma
  • W. J. Feenstra
Article

Summary

Chlorate resistant mutants of Arabidopsis thaliana were isolated, of which 10 exhibited a lowered nitrate reductase activity and 51 were chlorate-resistant because of an impaired uptake of chlorate. The 51 mutants of this type are all affected in the same gene. The mutants with a lowered nitrate reductase activity fall into 7 different complementation groups. Three of these mutants grow poorly on media with nitrate as the sole nitrogen source, while the others apparently can reduce sufficient nitrate to bring about growth. In all cases a low nitrate reductase activity coincides with an enhanced nitrite reductase activity. After sucrose gradient centrifugation of wildtype extracts nitrate reductase is found at the 8S position, whereas cytochrome-c reductase is found both at 4 and 8S positions. It is suggested that the functional nitrate reductase is a complex consisting of 4S subunits showing cytochrome-c reductase activity and a Mo-bearing cofactor. All mutants except B25 are capable of assembling the 4S subunits into complexes which for most mutants have a lower S value and exhibit a lower nitrate reductase activity than the wildtype complexes. Since the mutants B25 and B73 exhibit a low xanthine dehydrogenase activity, the Mo-bearing cofactor is probably less available in these mutants than in the wildtype. B73 appears to be the only mutant which is partly repaired by excessive Mo. The possible role of several genes is discussed.

Key words

Arabidopsis thaliana Mutant Chlorateresistance Nitrate reductase Cytochrome-c reductase Xanthine dehydrogenase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Lirature

  1. Arstt, H.N. Jr.; MacDonald, D.W.; Cove, D.J. (1970): Molybdate metabolism in Aspergillus nidulans, I. Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Mol. Gen. Genet. 108, 129–145Google Scholar
  2. Braaksma, F.J.; Feenstra, W.J. (1975): Nitrate reduction in Arabidopsis thaliana. Arabidopsis Inf. Serv. 12, 16–17Google Scholar
  3. Braaksma, F.J.; Feenstra, W.J. (1982a): Nitrate reduction in the wildtype and a nitrate reductase-deficient mutant of Arabidopsis thaliana. Physiol. Plant. 54, 351–360Google Scholar
  4. Braaksma, F.J.; Feenstra, W.J. (1982b): Reverse mutants of the nitrate reductase-deficient mutant B25 of Arabidopsis thaliana. Theor. Appl. Genet. 61, 263–271Google Scholar
  5. Braaksma, F.J.; Feenstra, W.J.; Hermans, E. (1979): Nitrate reduction in Arabidopsis thaliana, IV. Arabidopsis Inf. Serv. 16, 68–70Google Scholar
  6. Coddington, A. (1976): Biochemical studies on the nit mutants of Neurospom crassa. Mol. Gen. Genet. 145, 195–206Google Scholar
  7. Cove, D.J. (1979): Molecular genetics of nitrate and nitrite reductases. In: Nitrogen assimilation of plants (eds. Hewitt, E.J.; Cutting, C.V.), pp. 289–297. London, New York, San Francisco: Acad. PressGoogle Scholar
  8. Doddema, H.; Hofstra, J.J.; Feenstra, W.J. (1978): Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate and chlorate. Physiol. Plant. 43, 343–350Google Scholar
  9. Feenstra, W.J. (1964): Isolation of nutritional mutants in Arabidopsis thaliana. Genetica 35, 259–269Google Scholar
  10. Feenstra, W.J. (1965): An emasculation technique. Arabidopsis Inf. Serv. 2, 34Google Scholar
  11. Feenstra, W.J. (1978): Contiguity of linkage groups 1 and 4 as revealed by linkage relationship of two newly isolated markers dis-1 and dis-2. Arabidopsis Inf. Serv. 15, 35–38Google Scholar
  12. Feenstra, W.J.; Braaksma, F.J. (1976): Genetic control of nitrate reduction in Arabidopsis. Arabidopsis Inf. Serv. 13, 133–135Google Scholar
  13. Feenstra, W.J.; Jacobsen, E. (1980): Isolation of a nitrate reductase deficient mutant of Pisum sativum by means of selection for chlorate resistance. Theor. Appl. Genet. 58, 39–42Google Scholar
  14. Hewitt, E.J.; Hucklesby, D.P.; Mann, A.F.; Notion, B.A.; Rucklidge, G.J. (1979): Regulation of nitrate assimilation in plants. In: Nitrogen assimilation of plants (eds. Hewitt, E.J.; Cutting, C.V.), pp. 255–287. London, New York, San Francisco: Acad. PressGoogle Scholar
  15. Kleinhofs, A.; Warner, R.L.; Muehlbauer, F.J.; Nilan, R.A. (1978): Induction and selection of specific gene mutations in Hordeum and Pisum. Mutat. Res. 51, 29–35Google Scholar
  16. Kleinhofs, A.; Kuo, T.; Warner, R.L. (1980): Characterization of nitrate reductase-deficient barley mutants. Mol. Gen. Genet. 177, 421–425Google Scholar
  17. King, J.; Khanna, V. (1980): A nitrate reductase-less variant isolated from suspension cultures of Datura innoxia (Mill.) Plant Physiol. 66, 632–636Google Scholar
  18. Koornneef. M.: Van der Veen. J.H. (1978): Gene localization with trisomics in Arabidopsis thaliana. Arabidopsis Inf. Serv. 15, 38–43Google Scholar
  19. MacDonald, D.W.; Cove, D.J.; Coddington, A. (1974): Cytochrome-c reductase from wildtype and mutant strains of Aspergillus nidulans. Mol. Gen. Genet. 128, 187–199Google Scholar
  20. Mendel, R.R.; Müller, A.J. (1976): A common genetic determinant of xanthine dehydrogenase and nitrate reductase in Nicotiana tabacum. Biochem. Physiol. Pflanz. 170, 538–541Google Scholar
  21. Mendel, R.R.; Müller, A.J. (1978): Reconstitution of NADH-nitrate reductase in vitro from nitrate reductase-deficient Nicotiana tabacum mutants. Mol. Gen. Genet. 161, 77–80Google Scholar
  22. Mendel, R.R.; Müller, A.J. (1979): Nitrate reductase-deficient mutant cell lines of Nicotiana tabacum. Further biochemical characterization. Mol. Gen. Genet. 177, 145–153Google Scholar
  23. Mendel, R.R.; Miiller, A.J. (1980): Comparative characterization of nitrate reductase from wild-type and molybdenum cofactor-defective cell cultures of Nicotiana tabacum. Plant Sci. Lett. 18, 277–288Google Scholar
  24. Müller, A.J. (1963): Embryonentest zum Nachweis rezessiver Letalfaktoren bei Arabidopsis thaliana. Biol. Zentralbl. 82, 133–163Google Scholar
  25. Müller, A.J. (1965): Comparative studies on the induction of recessive lethals by various mutagens. Arabidopsis Inf. Serv. (Suppl.) 1, 192–197Google Scholar
  26. Müller, A.J.; fnGrafe, R. (1975): Mutant cell lines of Nicotiana tabacum deficient in nitrate reductase. 12. Int. Bot. Congr. (Abstr.), p. 304. Leningrad 1975Google Scholar
  27. Müller, A.J.; Grafe, R. (1978): Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol. Gen. Genet. 161, 67–76Google Scholar
  28. Nguyen, J. (1980): Catabolism of adenine derivatives in leaves. Plant Physiol. 66, 935–939Google Scholar
  29. Nichols, G.L.; Syrett, P.J. (1978): Nitrate reductase deficient mutants of Chlamydomonas reinhardii. Isolation and Genetics. J. Gen. Microbiol. 108, 71–77Google Scholar
  30. Notion, B.A.; Hewitt, E.J. (1979): Structure and properties of higher plant nitrate reductase, especially Spinacea oleacea. In: Nitrogen assimilation of plants (eds. Hewitt. E.J.; Cutting, C.V.), pp. 227–244. London, New York, San Francisco: Acad. PressGoogle Scholar
  31. Oostindier-Braaksma, F.J.: Feenstra, W.J. (1973a): Isolation and characterization of chlorate-resistant mutants of Arabidopsis thaliana. Mutat. Res. 19, 175–185Google Scholar
  32. Oostindier-Braaksma, F.J.; Feenstra, W.J. (1973b): Nitrate reduction in Arabidopsis thaliana. Arabidopsis Inf. Serv. 10, 33Google Scholar
  33. Oostindier-Braaksma, F.J.; Feenstra, W.J. (1974): Nitrate reduction in Arabidopsis thaliana. Arabidopsis Inf. Serv. 11, 8Google Scholar
  34. Pateman, J.A.; Cove, D.J.; Rever, B.M.; Roberts, D.B. (1964): A common cofactor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature 201, 58–60Google Scholar
  35. Redei, G.P. (1962): Single locus heterosis. Z. Vererbungsl. 93, 164–170Google Scholar
  36. Scazzocchiao, C.; Holl, F.B.; Foguelman, A.I. (1973): The genetic control of molybdoflavoproteins in Aspergillus nidulans. Eur. J. Biochem. 36, 428–445Google Scholar
  37. Van der Veen, J.H.; Gerlach, M. (1965): Chimeric structureafter EMS treatment of seeds. Arabidopsis Inf. Serv. 2, 14–15Google Scholar
  38. Warner, R.L.; Kleinhofs, A. (1981): Nitrate utilization by nitrate reductase-deficient barley mutants. Plant Physiol. 67, 740–743Google Scholar
  39. Warner, R.L.; Lin, C.J.; Kleinhofs, A. (1977): Nitrate reductase-deficient mutants in barley. Nature 269, 405–407Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • F. J. Braaksma
    • 1
  • W. J. Feenstra
    • 1
  1. 1.Department of GeneticsUniversity of Groningen, Biological CentreHaren (Gn)The Netherlands

Personalised recommendations