Archives of Microbiology

, Volume 161, Issue 4, pp 345–351 | Cite as

Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide

  • Jamal Abrini
  • Henry Naveau
  • Edmond-Jacques Nyns
Original Papers


A strictly anaerobic, gram-positive, sporeforming, rod-like, motile bacterium was enriched from rabbit feces, and isolated using carbon monoxide as sole source of energy and carbon. The isolate metabolizes CO with ethanol, acetate and CO2 as end-products. Other substrates used as carbon and energy sources include CO2 plus H2, pyruvate, xylose, arabinose, fructose, rhamnose, and l-glutamate. The optimum temperature for growth is 37°C. The optimum pH for chemolithotrophic growth lies around 5.8 to 6.0 Sulfate is not reduced. Growth is inhibited either by penicillin, chloramphenicol, tetracyclin or ampicillin, each at 100 μg per ml. The isolate has a DNA-base composition of 25.9±0.6% guanine plus cytosine. The isolate represents a new species of Clostridium for which the name Clostridium autoethanogenum is proposed. The type strain is strain JA1-1

Key words

Clostridium autoethanogenum (description) Carbon monoxide utilization Ethanol production Acetate production Acetogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AndreesenJR, GottschalkG, SchlegelHG (1970) Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol 72: 154–174Google Scholar
  2. Beckers G, Naveau H, Nyns EJ, Donlon B, Colleran E, Albagnac G, Roustan JL, Samain E (1988) Production of ethanol and other molecules by anaerobic fermentation in fixed-cell reactors of gas produced by lignocellulose gasification. In: Proc. Euroforum New Energies 1988 CEC Contractor's Mtg, Saarbrücken HS Stephens and Assoc Publ. for CEC Luxemburg 3: 534–542Google Scholar
  3. BraunM, MayerF, GottschalkG (1981) Clostridium aceticum (wieringae), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128: 288–293Google Scholar
  4. BrysonMF, DrakeHL (1988) A reevaluation of the metabolic potential of Clostridium formicoaceticum. Abstr. Ann Meet Am Soc Microbiol I 107: 198Google Scholar
  5. BuckJD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44: 992–993Google Scholar
  6. CarloneGM, ValadezMJ, PickettMJ (1983) Methods for distinguishing Gram-positive from Gram-negative bacteria. J Clin Microbiol 16: 1157–1159Google Scholar
  7. CatoEP, GeorgeWL, FinegoldSM (1986) Genus Clostridium prazmawski 1880, 23AL. In: SneatPHA (ed) Bergey's manual of systematic bacteriology, vol 2. William & Wilkins, Baltimore, pp 1141–1200Google Scholar
  8. DanielsL, FuchsG, ThauerRK, ZeikusJG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132: 118–126Google Scholar
  9. DashekviczMP, UffenRL (1979) Identification of carbon monoxide-metabolizing bacterium as a strain of Rhodopseudomonas gelatinosa (Molisch), van Niel. Int J Syst Bacteriol 29: 145–148Google Scholar
  10. FontaineFE, PetersonWH, McCoyE, JohnsonMJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum nov. sp. J Bacteriol 43: 701–715Google Scholar
  11. GeerligsG, AldrichHC, HarderW, DiekertG (1987) Isolation and characterisation of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch Microbiol 148: 305–313Google Scholar
  12. GenthnerBRS, BryantMP (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43: 70–74Google Scholar
  13. GenthnerBRS, BryantMP (1987) Additional characteristics of one-carbon-compound utilisation by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53: 471–476Google Scholar
  14. GenthnerBRS, DavisCL, BryantMP (1981) Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol and H2−CO2-utilizing species. Appl Environ Microbiol 42: 12–19Google Scholar
  15. HungateRE (1969) A roll tube method for cultivation of strict anaerobes. In: HarrisJR, RibbonsDW (eds) Methods in microbiology, vol 3B, Academic Press, New York, pp 117–132Google Scholar
  16. KennesC, DubourguierHC, AlbagnacG, NaveauH, VeigaM, NynsEJ (1991) Fermentation of citrate by Lactobacillus plantarum in the presence of a yeast under acid conditions. Appl Microbiol Biotechnol 35: 369–372Google Scholar
  17. KerbyR, ZeikusJW (1983) Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr Microbiol 8: 27–30Google Scholar
  18. KlassonKT, ElmoreBB, VegaJL, AckersonMD, ClausenEC, GaddyJL (1990) Biological production of liquid and gaseous fuels from synthesis gas. Appl Biochem Biotechnol 24/25: 857–873Google Scholar
  19. KrumholzLR, BryantMP (1985) Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Syst Bacteriol 35: 454–456Google Scholar
  20. LevyPF, BarnardGW, Garcia-MartinezDV, SandersonJE, WiseDL (1981) Organic acid production from CO2/H2 and CO/H2 by mixed-culture anaerobes. Biotechnol Bioeng 23: 2293–2306Google Scholar
  21. LorowitzWH, BryantMP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47: 961–964Google Scholar
  22. McInterneyMJ, BryantMP, PfennigN (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122: 129–135Google Scholar
  23. MillerTL, WolinMJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27: 985–987Google Scholar
  24. O'BrienJM, WolkinRH, MoenchTT, MorganJB, ZeikusJG (1984) Association of hydrogen metabolism with unitotrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158: 373–375Google Scholar
  25. PrinsRA, LankhorstA (1977) Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol Lett 1: 255–258Google Scholar
  26. SavageMD, WuZ, DanielSL, LundieLL, DrakeHL (1987) Carbon monoxide dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol 53: 1902–1906Google Scholar
  27. SvetlichnyVA, SokolovaTG, GerhardtN, RingpfeilM, KostrikinaNA, ZavarzinGA (1991) Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermopholic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14: 254–260Google Scholar
  28. TouzelJP, PetroffD, AlbagnacG (1985) Isolation and characteristation of a new thermophilic Methanosarcina, the strain CHTI-55. Syst Appl Microbiol 6: 66–71Google Scholar
  29. UffenRL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci USA 73: 3298–3302Google Scholar
  30. VegaJL, PrietoS, ElmoreBB, ClausenEC, GaddyJL (1989) The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20/21: 781–797Google Scholar
  31. Wauthoz P, El Lioui M, Decallonne J (1990) Caractérisation des contaminants bactériens des aliments par analyse chromatographique des acides gras: possibilités et limites de la méthode. Le Microbiologiste face aux nouvelles technologies appliquées aux aliments, Colloque des 14 et 15 mars. Institut Pasteur, Paris, pp 310–316Google Scholar
  32. WiegelJ, BraunM, GottschalkG (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5: 255–260Google Scholar
  33. WordenRM, GrethleinAJ, ZeikusJG, DattaR (1989) Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Appl Biochem Biotechnol 20/21: 687–698Google Scholar

Copyright information

© Springer Verlag 1994

Authors and Affiliations

  • Jamal Abrini
    • 1
  • Henry Naveau
    • 1
  • Edmond-Jacques Nyns
    • 1
  1. 1.Unit of BioengineeringCatholic University of LouvainLouvain-la NeuveBelgium

Personalised recommendations