Advertisement

Archives of Microbiology

, Volume 161, Issue 4, pp 310–315 | Cite as

Several phenotypic changes in the cell envelope of Agrobacterium tumefaciens chvB mutants are prevented by calcium limitation

  • Saskia Swart
  • Trudy J. J. Logman
  • Ben J. J. Lugtenberg
  • Gerrit Smit
  • Jan W. Kijne
Original Papers

Abstract

The chvB gene of Agrobacterium tumefaciens encodes a 235 kDa proteinaceous intermediate involved in the synthesis of β-1,2-glucan. chvB mutants show a pleiotropic phenotype. Besides not to produce cyclic β-1,2-glucan, chvB mutants have been reported to be avirulent, attachment-deficient, and nonmotile. In this study we report additional differences from the parent strain, probably all linked to changes in the cell envelope. This pleiotropic phenotype — except for attachment and virulence — could largely be prevented by growing chvB cells with low levels of calcium. Although a role for β-1,2-glucan in osmoadaptation has been proposed, the mode of action of β-1,2-glucan is not known. We speculate that in A. tumefaciens β-1,2-glucan stabilizes membranes, which would be important especially in hypotonic media containing calcium.

Key words

Agrobacterium β-1,2-Glucan chvB Mutants—Ca2+ 

Abbreviations

Cb

carbenicillin

Km

kanamycin

TCA

trichloroacetic acid

Kav

fraction of the stationary gel volume available for diffusion

LPS

lipopolysaccharide

SDS-PAGE

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AlbersheimP, NevinsD, EnglishPD, KarrA (1967) A method for the analysis of sugars in plant cell wall polysaccharides by gas-liquid chromatography. Carbohydr Res 5: 340–345Google Scholar
  2. BákásLS, DisalvoEA (1991) Effect on the cryoprotective action of trehalose. Cryobiology 28: 347–353Google Scholar
  3. BeringerJ (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84: 188–198Google Scholar
  4. BlumH, BeierH, GrossHJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93–99Google Scholar
  5. BradleyDE, DouglasCJ, PeschonJ (1984) Flagella-specific bacteriophages of Agrobacterium tumefaciens: demonstration of virulence of nonmotile mutants. Can J Microbiol 30: 676–681Google Scholar
  6. CangelosiGA, MartinettiG, LeighJA, LeeCC, TheinssC, NesterEW (1989) Role for Agrobacterium tumefaciens chvA protein in export of β-1,2-glucan. J Bacteriol 171: 1609–1615Google Scholar
  7. CangelosiGA, MartinettiG, NesterEW (1990) Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic β-1,2-glucan. J Bacteriol 172: 2172–2174Google Scholar
  8. CarsiotisM, WeinsteinDL, KarchH, HolderIA, O'BrienAD (1984) Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect Immun 46: 814–818Google Scholar
  9. CornerTR, MarquisRE (1969) Why do bacterial protoplasts burst in hypotonic solutions? Biochim Biophys Acta 183: 544–558Google Scholar
  10. CroweLM, MourdianR, CroweJH, JacksonSA, WomeislyC (1984a) Effect of carbohydrates on membrane stability at low water activities. Biochim Biophys Acta 769: 141–150Google Scholar
  11. CroweJH, WhittamMA, ChapmenD, CroweLM (1984b) Interactions of phospholipid monolayers with carbohydrates. Biochim Biophys Acta 769: 151–159Google Scholar
  12. DeMaagdRA, RijkRde, MuldersIHM, LutgenbergBJJ (1989) Immunological characterization of Rhizobium leguminosarum outer membrane antigens using polyclonal and monoclonal antibodies. J Bacteriol 171: 1136–1142Google Scholar
  13. DouglasCJ, HalperinW, NesterEW (1982) Agrobacterium tumefaciens mutants affected in attachment to plant cells. J Bacteriol 152: 1265–1275Google Scholar
  14. DouglasCJ, StaneloniRJ, RubinRA, NesterEW (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bacteriol 161: 850–860Google Scholar
  15. GarfinkelDJ, SimpsonRB, ReamLW, WhiteFF, GordonMP, NesterEW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27: 143–153Google Scholar
  16. HansonRS, PhilipsJA (1981) Chemical composition. In: GerhardtP, MurrayRGE, CostilowRN, NesterEW, WoodWA, KriegNR, PhilipsGB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC, pp 328–364Google Scholar
  17. JohnstonDS, CoppardE, PareraPV, ChapmanD (1984) Langmuir film balance study of the interaction between carbohydrates and phospholipid monolayers. Biochemistry 23: 6912–6919Google Scholar
  18. LisLJ, ParsegianVA, RandRP (1981) Binding of divalent cations to dipalmitoylphosphatidylcholine bilayers and its effect on bilayer interaction. Biochemistry 20: 1761–1770Google Scholar
  19. LugtenbergBJJ, MeyersJ, PetersR, HoekPvan der, AlphenLvan (1975) Electrophoretic resolution of the major outer membrane protein of Escherichia coli K12 into four bands. FEBS Lett 58: 254–258Google Scholar
  20. MillerKJ, KennedyEP, ReinholdVN (1986) Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231: 48–51Google Scholar
  21. O'ConnellKP, HandelsmanJ (1989) ChvA locus may be involved in export of neutral cyclic β-1,2-linked glucan from Agrobacterium tumefaciens. Mol Plant-Microbe Int 2: 11–16Google Scholar
  22. OomsG, HooykaasPJJ, PoulisJA, SchilperoortRA (1980) Characterization of Tn904 insertions in octopine Ti plasmid mutants of Agrobacterium tumefaciens. J Bacteriol 144: 82–91Google Scholar
  23. RudolphA, CroweJH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22: 367–377Google Scholar
  24. SmitG, KijneJW, LugtenbergBJJ (1986) Correlation between extracellular fibrils and attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 168: 821–827Google Scholar
  25. SmitG, KijneJW, LugtenbergBJJ (1987) Involvement of both cellulose fibrils and a Ca2+-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 169: 4294–4301Google Scholar
  26. SmitG, LogmanTJJ, BoerrigterMETI, KijneJW, LugtenbergBJJ (1989) Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J Bacteriol 171: 4054–4062Google Scholar
  27. SmitG, TubbingDMJ, KijneJW, LugtenbergBJJ (1991) Role of Ca2+ in the activity of rhicadhesin from Rhizobium leguminosarum biovar viciae, which mediates the first step in attachment of Rhizobiaceae cells to plant root hair tips. Arch Microbiol 155: 278–283Google Scholar
  28. VanVeenRJH, DenDulk-RasH, SchilperoortRA, HooykaasPJJ (1987) Chromosomal nodulation genes: Sym-plasmid containing Agrobacterium strains need chromosomal virulence genes (chvA and chvB) for nodulation. Plant Mol Biol 8: 105–108Google Scholar
  29. ZorreguietaA, UgaldeRA (1986) Formation in Rhizobium and Agrobacterium spp. of a 235 kDa protein intermediate in β-d(1,2)-glucan synthesis. J Bacteriol 167: 947–951Google Scholar

Copyright information

© Springer Verlag 1994

Authors and Affiliations

  • Saskia Swart
    • 1
  • Trudy J. J. Logman
    • 1
  • Ben J. J. Lugtenberg
    • 1
  • Gerrit Smit
    • 1
  • Jan W. Kijne
    • 1
  1. 1.Institute of Molecular Plant SciencesLeiden UniversityLeidenThe Netherlands

Personalised recommendations