Histochemie

, Volume 34, Issue 3, pp 191–203

Demonstration of the neural crest origin of type I (APUD) cells in the avian carotid body, using a cytochemical marker system

  • A. G. E. Pearse
  • J. M. Polak
  • F. W. D. Rost
  • J. Fontaine
  • C. Le Lièvre
  • N. Le Douarin
Article

Summary

The biogenic amines present in the carotid body Type 1 cells of two avian species (Japanese quail and chicken) were identified, by microspectrofluorometry of formaldehyde-induced fluorescence, as dopamine and 5-hydroxytryptamine respectively. These and other cytochemical properties establish the cells as members of the APUD series.

Grafts of the neural rhombencephalic primordium from 6 to 10-somite quail embryos were implanted in the appropriate region of chick embryos of the same age. After up to 11 days incubation the carotid bodies of the host were freeze-dried and treated with hot formaldehyde vapour. The carotid body Type 1 cells in the chick host were identified, by the presence of dopamine and the absence of 5-HT, as cells from the quail neural crest.

The dopamine phenotype in cells of quail origin thus provides a cytochemical marker which may be used for other allograft experiments. The present work confirms earlier findings, using a biological (nuclear chromatin) marker, which showed the avian carotid body to be of neural crest origin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Lami, F., Murray, R.G.: Fine structure of the carotid body of Macaca mulata monkey. J. Ultrastruct. Res. 24, 465–478 (1968a).Google Scholar
  2. Al-Lami, F., Murray, R.G.: Fine structure of the carotid body of normal and anoxic cats. Anat. Rec. 160, 697–718 (1968b).Google Scholar
  3. Banister, R.J., Portic, P.J., Vogt, M.: The content and localization of catechol amines in the carotid labyrinths and aortic arches of Rana temporaria. J. Physiol. (Lond.) 192, 529–535 (1967).Google Scholar
  4. Becker, A.E., Drukker, J., Meijer, H.E.F.H.: Histochemical characteristics of chemoreceptor organs (glomera). Histochemie 11, 195–204 (1967).Google Scholar
  5. Biscoe, T.J.: Carotid body: Structure and function. Physiol. Rev. 51, 437–495 (1971).Google Scholar
  6. Biscoe, T.J., Stehbens, W.E.: Ultrastructure of the carotid body. J. Cell Biol. 30, 563–568 (1966).Google Scholar
  7. Björklund, A., Ehinger, B., Falck, B.: Analysis of fluorescence excitation peak ratios for the cellular identification of noradrenaline, dopamine or their mixtures. J. Histochem. Cytochem. 20, 56–64 (1972).Google Scholar
  8. Boyd, J.D.: The development of the human carotid body. Contr. Embryol. Carneg. Instn 26, 1–31 (1937).Google Scholar
  9. Capella, C., Solcia, E.: Optical and electron microscopical study of cytoplasmic granules in human carotid body, carotid body tumours and glomus jugulare tumours. Virchows Arch. Abt. B 7, 37–53 (1971).Google Scholar
  10. Celestino Da Costa, A.: La notion de métaneurogonie. C. R. Ass. Anat. (41st réunion) 644–653 (1955).Google Scholar
  11. Chen, I-Li, Yates, R.D.: Electron microscopic radioautographic studies of the carotid body following injections of labeled biogenic amine precursors. J. Cell Biol. 42, 794–803 (1969).Google Scholar
  12. Chiocchio, S.R., Biscardi, A.M., Tramezzani, J.H.: Catecholamines in the carotid body of the cat. Nature (Lond.) 212, 843–845 (1966).Google Scholar
  13. Dearnaley, D.P., Fillenz, M., Woods, R.I.: The identification of dopamine in the carotid body of the rabbit. In: R.W. Torrance, Arterial chemoreceptors, p. 189–192. Oxford-Edinburgh: Blackwell Sci. Publ. 1968.Google Scholar
  14. Eränkö, O.: The practical histochemical demonstration of catecholamines by formaldehyde induced fluorescence. J. roy. micr. Soc. 87, 259–276 (1967).Google Scholar
  15. Falck, B.: Observations on the possibility of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand. 56, Suppl. 197 (1962).Google Scholar
  16. Grimley, P.M., Glenner, G.G.: Ultrastructure of the human carotid body. A perspective on the mode of chemoreception. Circulation 37, 648–665 (1968).Google Scholar
  17. Hamberger, B., Ritzen, M., Wersäll, J.: Demonstration of catecholamines and 5-hydroxytryptamine in the human carotid body. J. Pharmacol. exp. Ther. 152, 197–201 (1966).Google Scholar
  18. Helpap, B., Hempel, K.: Über den Katecholamin-Stoffwechsel des Carotiskörperchens der Ratte. Virchows Arch. Abt. B 3, 270–281 (1969).Google Scholar
  19. Hervonen, A., Korkala, O.: The histochemically demonstrable monoamines of human fetal carotid body. Experientia (Basel) 28, 449–450 (1972).Google Scholar
  20. Höglund, R.: An ultrastructural study of the carotid body of horse and dog. Z. Zellforsch. 76, 568–576 (1967).Google Scholar
  21. Kobayashi, S.: Catecholamines in the avian carotid body. Experientia (Basel) 25, 1075–1076 (1969).Google Scholar
  22. Kohn, A.: Über den Bau und die Entwicklung der sog. Carotisdrüse. Arch. mikr. Anat. 56, 81–148 (1900).Google Scholar
  23. Le Douarin, N.: Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme ≪marquage biologique≫ dans des recherches sur les interactions tissulaires et les migrations cellulaires au cours de l'ontogenèse. Bull. biol. France Belg. 103, 435–452 (1969).Google Scholar
  24. Le Douarin, N.: Caractéristiques ultrastructurales du noyau interphasique chez la caille et chez le poulet et utilisation de cellules de caille comme ≪marqueurs biologiques≫ en embryologie expérimentale. Ann. d'Embryol. Morphogen. 4, 125–135 (1971).Google Scholar
  25. Le Douarin, N., Le Lièvre, C.: Démonstration de l'origine neurale des cellules à calcitonine du corps ultimobranchial chez l'embryon de Poulet. C. R. Acad. Sci. (Paris), Série D 270, 2857–2860 (1970).Google Scholar
  26. Le Douarin, N., Le Lièvre, C., Fontaine. J.: Recherches experimentales sur l'origine embryologique du corps carotidien chez les Oiseaux. C. R. Acad. Sci. (Paris), Série D 275, 583–586 (1972).Google Scholar
  27. Le Douarin, N., Teillet, M.A.: Localization, par le méthode des greffes interspécifiques, du territoire neural dont dérivent les cellules adrénales surrénaliennes chez l'embryon d'Oiseau. C. R. Acad. Sci. (Paris), Série D 272, 481–484 (1971).Google Scholar
  28. Lever, J.D., Lewis, P.R., Boyd, J.D.: Observations on the fine structure and histochemistry of the carotid body in the cat and rabbit. J. Anat. (Lond.) 93, 478–491 (1959).Google Scholar
  29. Melander, A., Owman, Ch., Sundler, F.: Concomitant depletion of dopamine and secretory granules from cells in the ultimobranchial gland of vitamin D2-treated chicken. Histochemie 25, 21–31 (1971).Google Scholar
  30. Millonig, G.: Further observations on a phosphate buffer for osmium solutions in fixation. In: Proc. 5th Int. Congr. Electron Microscopy. Edit. S.S. Breese. New York: Acad. Press 1962.Google Scholar
  31. Model, P.G., Dalton, H.C.: The uptake and localization of radioactive DOPA by amphibian melanoblasts in vitro. Develop. Biol. 17, 245–271 (1968).Google Scholar
  32. Mönckeberg, I.G.: Die Tumoren der Glandula carotica. Beitr. path. Anat. 38, 1–66 (1905).Google Scholar
  33. Morita, R., Chiocchio, S.R., Tramezzani, J.H.: Four types of main cells in the carotid body of the cat. J. Ultrastruct. Res. 28, 399–410 (1969).Google Scholar
  34. Muscholl, E., Rahn, K.H., Watzka, M.: Nachweis von Noradrenalin in Glomus caroticum. Naturwissenschaften 47, 325 (1960).Google Scholar
  35. Niemi, M., Ojala, K.: Cytochemical demonstration of catecholamines in the human carotid body. Nature (Lond.) 203, 539–540 (1964).Google Scholar
  36. Pearse, A.G.E.: 5-hydroxytryptophan uptake by dog thyroid C cells and its possible significance in polypeptide hormone production. Nature (Lond.) 211, 598 (1966a).Google Scholar
  37. Pearse, A.G.E.: Common cytochemical properties of cells producing polypeptide hormones. with particular reference to calcitonin and the thyroud C cells. Vet. Rec. 79, 587–590 (1966b).Google Scholar
  38. Pearse, A.G.E.: Histochemistry, theoretical and applied. vol. 1, third ed. London: J. & A. Churchill Ltd. 1968.Google Scholar
  39. Pearse, A.G.E.: The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series, and the embryologic, physiologic and pathologic implications of the concept. J. Histochem. Cytochem. 17, 303–313 (1969).Google Scholar
  40. Pearse, A.G.E.: Histochemistry, theoretical and applied, vol. 2, third ed. London: Churchill-Livingstone 1972.Google Scholar
  41. Pearse, A.G.E., Carvalheira, A.: Cytochemical evidence for an ultimobranchial origin of rodent thyroid C cells. Nature (Lond.) 214, 929–930 (1967).Google Scholar
  42. Pearse, A.G.E., Polak, J.M.: Cytochemical evidence for the neural crest origin of mammalian ultimobranchial C cells. Histochemie 27, 96–102 (1971 a).Google Scholar
  43. Pearse, A.G.E., Polak, J.M.: Neural crest origin of the endocrine polypeptide (APUD) cells of the gastrointestinal tract and pancreas. Gut 12, 783–788 (1971b).Google Scholar
  44. Pearse, A.G.E., Polak, J.M., Noorden, S. van: The neural crest origin of the C cells and their comparative cytochemistry and ultrastructure in the ultimobranchial gland. In: Calcium, parathyroid hormone and the calcitonins. Amsterdam: Excerpta Medica 1971.Google Scholar
  45. Pearse, A.G.E., Welsch, U.: Ultrastructural characteristics of thyroid C cells in the summer, autumn and winter states of the hedgehog (Erinaceus europaeus, L.), with reference to other mammalian species. Z. Zellforsch. 92, 596–609 (1968).Google Scholar
  46. Polak, J.M., Rost, F.W.D., Pearse, A.G.E.: Fluorogenic amine tracing of neural crest derivatives forming the adrenal medulla. Gen. comp. Endocr. 16, 132–136 (1971).Google Scholar
  47. Rabl, H.: Die Entwicklung der Carotisdrüse beim Meerschweinchen. Arch. mikr. Anat. 96, 315–339 (1922).Google Scholar
  48. Rogers, D.C.: The development of the rat carotid body. J. Anat. (Lond.) 99, 89–101 (1965).Google Scholar
  49. Ross, L.L.: Electron microscopic observations of the carotid body of the cat. J. biophys. biochem. Cytol. 6, 253–262 (1959).Google Scholar
  50. Rost, F.W.D., Pearse, A.G.E.: An improved microspectrofluorimeter with autmatic digital data logging: construction and operation. J. Microsc. 94, 93–105 (1971).Google Scholar
  51. Solcia, E., Capella, C., Vassallo, G.: Lead-haematoxylin as a stain of endocrine cells. Significance of staining and comparison with other selective methods. Histochemie 20, 116–126 (1969).Google Scholar
  52. Solcia, E., Vassallo, G., Capella, C.: Selective staining of endocrine cells by basic dyes after acid hydrolysis. Stain Technol. 43, 257–263 (1968).Google Scholar
  53. Stoeckel, M.E., Porte, A.: Etude ultrastructurale des corps ultimobranchiaux du poulet. I. Aspect normal développement embryonnaire. Z. Zellforsch. 94, 495–512 (1969).Google Scholar
  54. Szijj, I., Csapó, Z., Lásló, F.A., Kovács, K.: Medullary cancer of the thyroid gland associated with hypercorticism. Cancer (Philad.) 24, 167–173 (1969).Google Scholar
  55. Teillet, M.A., Le Douarin, N.: La migration des cellules pigmentaires étudiée par la methode des greffes héterospécifiques de tube nerveux chez l'embryon d'Oiseau. C. R. Acad. Sci. (Paris), Série D 270, 3095–3098 (1970).Google Scholar
  56. Winiwarter, H. de: Origine et développement du ganglion carotidien. Appendice: participation de l'hypoblaste à la constitution des ganglions craniens. Arch. Biol. (Paris) 50, 67–94 (1939).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • A. G. E. Pearse
    • 1
    • 2
  • J. M. Polak
    • 1
    • 2
  • F. W. D. Rost
    • 1
    • 2
  • J. Fontaine
    • 1
    • 2
  • C. Le Lièvre
    • 1
    • 2
  • N. Le Douarin
    • 1
    • 2
  1. 1.Department of HistochemistryRoyal Postgraduate Medical School, Hammersmith HospitalLondonUK
  2. 2.Laboratoire d'Embryologie de la Faculté des Sciences de NantesCedex NantesFrance

Personalised recommendations