Mammalian Genome

, Volume 6, Issue 2, pp 114–117

Characterization and mapping of three new mammalian ATP-binding transporter genes from an EST database

  • R. Allikmets
  • B. Gerrard
  • D. Glavač
  • M. Ravnik-Glavač
  • N. A. Jenkins
  • D. J. Gilbert
  • N. G. Copeland
  • W. Modi
  • M. Dean
Original Contributions

Abstract

Analysis of the human expressed sequence tag (EST) database identified four clones that contain sequences of previously uncharacterized genes, members of the ATP-binding cassette (ABC) superfamily. Two new ABC genes (EST20237, 31252) are located at Chromosome (Chr) 1q42 and 1q25 respectively in humans, as determined by FISH; at locations distinct from previously mapped genes of this superfamily. Two additional clones, EST 600 and EST 1596, were found to represent different ATP-binding domains of the same gene, ABC2. This gene was localized to 9q34 in humans by FISH and to the proximal region of Chr 2 in mice by linkage analysis. All genes display extensive diversity in sequence and expression pattern. We present several approaches to characterizing EST clones and demonstrate that the analysis of EST clones from different tissues is a powerful approach to identify new members of important gene families. Some drawbacks of using EST databases, including chimerism of cDNA clones, are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.D., Kerlavage, A.R., Fields, C., Venter, J.C. (1993). 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nature Genet. 4, 256–267.Google Scholar
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.Google Scholar
  3. Ames, G.F.-L., Lecar, H. (1992). ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters. FASEB J 6, 2660–2666.Google Scholar
  4. Boguski, M.S., Lowe, T.M.J., Tolstoshev, C.M. (1993). The EST express gathers speed. Nature Genet. 4, 331–332.Google Scholar
  5. Copeland, N.G., Jenkins, N.A. (1991). Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 7, 113–118.Google Scholar
  6. Devereaux, J., Haeberli, P., Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395.Google Scholar
  7. Feng, D-F., Doolittle, R.F. (1987). A multiple sequence alignment using a simplification of the progressive alignment method. J. Mol. Evol. 35, 351–360.Google Scholar
  8. Franco del Amo, F., Gendron-Maguire, M., Swiatek, P.J., Jenkins, N.A., Copeland, N.G., Gridley, T. (1993). Cloning, analysis, and chromosomal localization of Notch-1, a mouse homolog of Drosophila Notch. Genomics 15, 259–264.Google Scholar
  9. Grausz, J.D., Auffray, C. (1993). Strategies in cDNA programs. Genomics 17, 530–532.Google Scholar
  10. Green, E.L. (1981). Linkage, recombination and mapping. In Genetics and Probability in Animal Breeding Experiments, ed. (New York: Oxford University Press), pp. 77–113.Google Scholar
  11. Gros, P., Croop, J., Housman, D. (1986). Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47, 317–380.Google Scholar
  12. Higgins, C.F. (1992). ABC transporters: from micro-organisms to man. Annu. Rev. Cell Biol. 8, 67–113.Google Scholar
  13. Jenkins, N.A., Copeland, N.G., Taylor, B.A., Lee, B.K. (1982). Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 43, 26–36.Google Scholar
  14. Lincoln, A.L., Daly, M., Lander, E. (1991). PRIMER: a computer program for automatically selecting PCR primers. Whitehead Institute Technical Report. MIT, Cambridge, MA.Google Scholar
  15. Luciani, M.F., Denizot, F., Savary, S., Mattei, M.G., Chimini, G. (1994). Cloning of two novel ABC transporters mapping on human chromosome 9. Genomics 21, 150–159.Google Scholar
  16. Mosser, J. (1993). Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361, 726–730.Google Scholar
  17. Riordan, J.R., Rommens, J.M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., Drumm, M.L., Iannuzzi, M.C., Collins, F.S., Tsui, L.-C. (1989). Identification of the cystic fibrosis gene: cloning and characterization of the complementary DNA. Science 245, 1066–1073.Google Scholar
  18. Spies, T., Bresnahan, M., Bahram, S., Arnold, D., Blanck, G., Mellins, E., Pious, D., DeMars, R. (1990). A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 348, 744–747.Google Scholar
  19. Takeda, J., Yano, H., Eng, S., Zeng, Y., Bell, G.I. (1993). A molecular inventory of human pancreatic islets: sequence analysis of 1000 cDNA clones. Hum. Mol. Genet. 2, 1793–1798.Google Scholar
  20. Vailly, J., Verrando, P., Champliaud, M.-F., Gerecke, D., Wagman, D.W., Baudoin, C., Aberdam, D., Burgeson, R., Bauer, E., Ortonne, J.-P. (1994). The 100-kDa chain of nicein/kalinin is a laminin B2 chain variant. Eur. J. Biochem. 219, 209–218.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • R. Allikmets
    • 1
  • B. Gerrard
    • 2
  • D. Glavač
    • 2
  • M. Ravnik-Glavač
    • 2
  • N. A. Jenkins
    • 3
  • D. J. Gilbert
    • 3
  • N. G. Copeland
    • 3
  • W. Modi
    • 2
  • M. Dean
    • 1
  1. 1.Laboratory of Viral Carcinogenesis, National Cancer InstituteFrederick Cancer Research and Development CenterFrederickUSA
  2. 2.Biological Carcinogenesis and Development Program, Program Resources, Inc./DynCorpFrederick Cancer Research and Development CenterFrederickUSA
  3. 3.Mammalian Genetics Laboratory, ABL-Basic Research Program, National Cancer InstituteFrederick Cancer Research and Development CenterFrederickUSA

Personalised recommendations