Coral Reefs

, Volume 4, Issue 1, pp 1–9

What is hermatypic?

A redefinition of ecological groups in corals and other organisms
  • Helmut Schuhmacher
  • Helmut Zibrowius
Article

Abstract

The term hermatypic, as widely used in the literature of extant and fossil Scleractinia, includes, by definition (Wells 1933), the confusing generalization of equating reef-building with containing zooxanthellae. In course of time the use of the term diverged into denoting organisms which are either reef-building (including calcareous Rhodophyta) or those that contain zooxanthellae (including soft Alcyonaria). The equation: reef-building corals harbour zooxanthellae and vice-versa, is invalidated by reviewing the various ecological categories of corals such as: reef-building species without the support of zooxanthellae, zooxanthellae-containing corals which inhabit but do not build reefs, zooxanthellae-containing, non-reef-building corals beyond the bathymetric and latitudinal limits of reefs, and framework-erecting corals in deep waters without zooxanthellae. Former attempts to improve the original definition of hermatypic are shown to be insufficient to match the ecological diversity of corals. A strict terminological separation of the properties zooxanthellae-containing, reef-building and (more generally) framework-building is provided by the use of the revised, respectively new terms zooxanthellate, hermatypic and constructional (with the respective antonyms azooxanthellate, ahermatypic and nonconstructional). This terminology also applies to non-scleractinians.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcock A (1898) An account of the deep-sea Madreporaria collected by the Royal Indian marine survey ship “Investigator”. Trustees of the Indian Museum, CalcuttaGoogle Scholar
  2. Arnaud PM, Thomassin BA (1976) First records and adaptive significance of boring into a free-living scleractinian coral (Heteropsammia michelini) by a date mussel (Lithophaga lessepsiana). Veliger 18:367–374Google Scholar
  3. Beauvais L (1973) Upper Jurassic hermatypic corals. In: Hallam A (ed) Atlas of palaeobiogeography. Elsevier, Amsterdam, pp 317–328Google Scholar
  4. Braithwaite CJR (1973) Reefs: just a problem of semantics? Am Assoc Petrol Geol Bull 57:1100–1116Google Scholar
  5. Branner JC (1904) The stone reefs of Brazil. Bull Mus Comp Zool Hary Univ 44:1–285Google Scholar
  6. Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanogr Mar Biol Ann Rev 14:183–225Google Scholar
  7. Cairns SD (1979) the deep-water Scleractinia of the Caribbean Sea and adjacent waters. Stud Fauna Curaçao 57:1–341Google Scholar
  8. Cairns SD (1981) Marine flora and fauna of the Northeastern United States. Scleractinia. NOAA Techn Rep NMFS 438:1–14Google Scholar
  9. Cairns SD (1982) Antarctic and subantarctic Scleractinia. Antarct Res Ser 38:61–164Google Scholar
  10. Cairns SD, Stanley GD (1982) Ahermatypic coral banks: living and fossil counterparts. Proc 4th Int Coral Reef Symp 1:611–618Google Scholar
  11. Chamberlain JA Jr (1978) Mechanical properties of coral skeleton: compressive strength and its adaptive significance. Paleobiology 4:419–435Google Scholar
  12. Crossland C (1952) Madreporaria, Hydrocorallinae, Heliopora and Tubipora. Sci Rep Great Barrier Reef Exped 1928–1929. Brit Mus (Nat Hist) 6:85–257Google Scholar
  13. Cumings ER (1932) Reefs or bioherms? Geol Soc Am Bull 43:331–352Google Scholar
  14. Duclaux G, Lafargue F (1973) Madréporaires de Méditerranée occidentale. Recherche des Zooxanthelles symbiontiques. Compléments morphologiques et écologiques. Vie Milieu Ser A 23:45063Google Scholar
  15. Feustel H (1966) Anatomische Untersuchungen zum Problem der Aspidosiphon-Heterocyathus-Symbiose. Verh Dtsch Zool Ges 1965:131–143Google Scholar
  16. Fricke HW, Hottinger L (1983) Coral bioherms below the euphotic zone in the Red Sea. Mar Ecol Progr Ser 11:113–117Google Scholar
  17. Fricke HW, Schuhmacher H (1983) The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). PSZN 1. Mar Ecol 4:163–194Google Scholar
  18. Gill GA, Coates AG (1977) Mobility, growth patterns and substrate in some fossil and recent corals. Lethaia 10:119–134Google Scholar
  19. Ginsburg RN, Lowenstam HA (1958) The influence of marine bottom communities on the depositional environment of sediments. J Geol 66:310–318Google Scholar
  20. Ginsburg RN, Schroeder JH (1973) Growth and submarine fossilization of algal cup reefs, Bermuda. Sedimentology 20:575–614Google Scholar
  21. Goreau TF (1963) Calcium carbonate deposition by coralline algae and corals in relation to their roles as reefbuilders. NY Acad Sci Ann 109:127–167Google Scholar
  22. Goreau TF, Goreau NI (1959) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypci corals under various conditions in the reel. Biol Bull 117:239–250Google Scholar
  23. Goreau TF, Goreau NI (1973) The ecology of Jamaican coral reefs. II. Geomorphology, zonation, and sedimentary phases. Bull Mar Sci 23:421–432Google Scholar
  24. Goreau TF, Younge CM (1968) Coral community on muddy sand. Nature (London) 217:421–423Google Scholar
  25. Goreau TF, Goreau NI, Soot-Ryen T, Yonge CM (1969) On a new commensal mytilid (Mollusca: Bivalvia) opening into the coelenteron of Fungia scutaria (Coelenterata). J Zool 158:171–195Google Scholar
  26. Grygier MJ (1981) Petrarca okadai, a new crustacean (Maxillopoda: Ascothoracica) from the Great Barrier Reef, the first shallow water record of the genus. Crustacean Biol 1:183–189Google Scholar
  27. Hartman WD, Goreau TF (1970) Jamaican coralline sponges: their morphology, ecology and fossil relatives. Symp Zool Soc London 25:205–243Google Scholar
  28. Heckel PH (1974) Carbonate buildups in the geological record: a review. In: Laporte LF (ed) Reefs in space and time. SEPM Spec Publ 18:90–154Google Scholar
  29. Heider A von (1882) Die Gattung Cladocora Ehrenb. Sitzungsber K Akad Wiss Math Naturwiss Kl 1881 84:634–667Google Scholar
  30. Keller NB (1976) The deep-sea madreporarian corals of the genus Fungiacyathus from the Kurile-Kamchatka, Aleutian trenchs and other regions of the world ocean [in Russian, with English summary]. Trudy Inst Okeanol Akad Nauk SSSR 99:31–44Google Scholar
  31. Kempf M, Laborel J (1968) Formations de vermets et d'algues calcaires sur les côtes du Brésil. Recl Trav Stn Mar Endoume-Marseille 59 (Bull 43):9–23Google Scholar
  32. Konishi K (1982) Alcyonarian spiculite: limestone of soft corals. Proc 4th Int Coral Reef Symp 1:643–649Google Scholar
  33. Kühlmann D (1984) Das lebende Riff. Landbuch Verlag, HannoverGoogle Scholar
  34. Laborel J (1969) Les peuplements de madréporaires des cótes tropicales du Brésil. Ann Univ Abidjan Ser E 3:1–261Google Scholar
  35. Lang JC, Hartman WD, Land LS (1975) Sclerosponges: primary framework constructors on the Jamaican deep fore-reef. J Mar Res 33:223–231Google Scholar
  36. Lowenstam HA (1950) Niagaran reefs of the Great Lakes area. J Geol 58:430–488Google Scholar
  37. Maksimova SV (1972) Coral reefs in the Arctic and their paleogeographical interpretation. Int Geol Rev 14:764–769Google Scholar
  38. Maragos JE (1974a) Reef corals of Fanning Island. Pac Sci 28:247–255Google Scholar
  39. Maragos JE (1974b) Coral communities on a seaward reef slope, Fanning Island. Pac Sci 28:257–278Google Scholar
  40. Mariscal RE, Bigger CH (1977) Possible ecological significance of octocoral epithelial ultrastructure. Proc 3rd Int Coral Reef Symp 1:127–133Google Scholar
  41. McNeil FS (1954) Organic reefs and banks and associated detrital sediments. Am J Sci 252:385–401Google Scholar
  42. Montaggioni L (1980) Alcyonarian spiculites in coral reefs. 26e Congr Géol Int Paris 2:521Google Scholar
  43. Moore RC, Hill D, Wells JW (1956) Glossary of morphological terms applied to corals. In: Moore (ed) Treatise on invertebrate paleontology pt F: Coelenterata. Geological Society of America, New York; University of Kansas Press, Lawrence, pp F245–251Google Scholar
  44. Nelson HF, Brown CW, Brineman JH (1962) Skeletal limestone classification. Am Assoc Petrol Geol Mem 1:224–252Google Scholar
  45. Pichon M (1974) Free-living scleractinian coral communities in the coral reefs of Madagascar. Proc 2nd Int Coral Reef Symp 2:173–181Google Scholar
  46. Reed JK (1980) Distribution and structure of deep-water Oculina varicosa reefs off Central Eastern Florida. Bull Mar Sci 30:667–677Google Scholar
  47. Reed JK (1982) In situ growth rates of the scleractinian coral Oculina varicosa occurring with zooxanthellae on 6 m reefs and without on 80 m banks. Proc 4th Int Coral Reef Symp 2:201–206Google Scholar
  48. Rosen BR (1981) The tropical high diversity enigma — the corals' eye view. In: Forey PL (ed) Chance, change and challenge. The evolving biosphere. British Museum (Nat Hist), London; Cambridge University Press, Cambridge, pp 103–129Google Scholar
  49. Schuhmacher H (1975) Die Rolle der Weichkorallen (Alcyonacea, Octocorallia) innerhalb der Riffbiozönosen des Roten Meeres und des australischen Großen Barriereriffs. Verh Dtsch Zool Ges 1974:380–384Google Scholar
  50. Schuhmacher H (1976) Korallenriffe. Bayerischer Landwirtschaftsverlag, MünchenGoogle Scholar
  51. Schuhmacher H (1979) Experimentelle Untersuchungen zur Anpassung von Fungiiden (Scleractinia, Fungiidae) an unterschiedliche Sedimentations-und Bodenverhältnisse. Int Rev Gesamten Hydrobiol 64:207–243Google Scholar
  52. Schuhmacher H (1981) Die Festigkeit von Korallenskeletten — ein bisher unbeachteter Parameter beim Riffaufbau. Verh Dtsch Zool Ges 1981:154Google Scholar
  53. Schuhmacher H (1983) Die Tiefenverbreitung lichtabhängiger Steinkorallen und die Ansatztiefe rezenter Riffe im Golf von Akaba (Rotes Meer). Essen Geogr Arb 6:59–69Google Scholar
  54. Schuhmacher H (1984) The reef-building properties of Tubastraea micranthus (Scleractinia, Dendrophylliidae), a coral without zooxanthellae. Mar Ecol Prog Ser 20:93–99Google Scholar
  55. Schuhmacher H, Plewka M (1981 a) Mechanical resistance of reefbuilders through time. Oecologia (Berlin) 49:279–282Google Scholar
  56. Schuhmacher H, Plewka M (1981 b) The adaptive significance of mechanical properties versus morphological adjustments in skeletons of Acropora palmata and Acropora cervicornis (Cnidaria, Scleractinia). Proc 4th Int Coral Reef Symp 2:121–128Google Scholar
  57. Stanley GD (1981) Early history of scleractinian corals and its geological consequences. Geology 9:507–511Google Scholar
  58. Szmant-Froelich A, Pilson MEQ (1980) The effects of feeding frequency and symbiosis with zooxanthellae on the biochemical composition of Astrangia danae Milne Edwards & Haime, 1849. J Exp Mar Biol Ecol 48:85–97Google Scholar
  59. Teichert C (1958) Cold- and deep-water coral banks. Am Assoc Petrol Geo Bull 42:1064–1082Google Scholar
  60. Tunnicliffe V (1979) The role of boring sponges in coral fracture. Colloq Int CNRS 291:309–315Google Scholar
  61. Vaughan TW, Wells JW (1943) Revision of the suborders, families and genera of the Scleractinia. Geol Soc Am Spec Pap 44:1–363Google Scholar
  62. Veron JEN, Pichon M (1980) Scleractinia of Eastern Australia. III. Families Agariciidae, Siderastreidae, Fungiidae, Oculinidae, Merulinidae, Mussidae, Pectiniidae, Caryophylliidae, Dendrophylliidae. Aust Inst Mar Sci Monogr Ser 4Google Scholar
  63. Verrill AE (1906) The Bermuda Islands. IV. Geology and paleontology. V. An account of the coral reefs. Trans Conn Acad Arts Sci 12:45–348Google Scholar
  64. Wainwright SA (1967) Diurnal activity of hermatypic gorgonians. Nature (London) 216:1041Google Scholar
  65. Wells JW (1933) Corals of the Cretaceous of the Atlantic and Gulf coastal plains and western interior of the United States. Bull Am Paleontol 18:85–288Google Scholar
  66. Wells JW (1956) Scleractinia. In: Moore RW (ed) Treatise on invertebrate paleontology, pt F: Coelenterata. Geological Society of America, New York; University of Kansas Press, Lawrence, pp F328-F444Google Scholar
  67. Wilson JB (1979a) The distribution of the coral Lophelia pertusa (L) [L. prolifera (Pallas)] in the north-east Atlantic. J Mar Biol Assoc UK 59:149–164Google Scholar
  68. Wilson JB (1979b) “Patch” development of the deep-water coral Lophelia pertusa (L) on Rockall Bank. J Mar Biol Assoc UK 59:165–177Google Scholar
  69. Yonge CM (1940) The biology of reef-building corals. Sci Rep Great Barrier Reef Exped: 1928–29, Brit Mus (Nat Hist) 1:353–393Google Scholar
  70. Yonge CM (1958) Ecology and physiology of reef-building corals. In: Buzzati-Traverso (ed) Perspectives in marine biology. Scripps Institution of Oceanography, La Jolla, California, pp 117–135Google Scholar
  71. Zibrowius H (1974) Oculina patagonica, Scléractiniaire hermatypique introduit en Méditerranée. Helgol Wiss Meeresunters 26:153–173Google Scholar
  72. Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l'Atlantique nord-oriental. Mém Inst Océanogr Monaco 11:1–284Google Scholar
  73. Zibrowius H (1981) Thanatocoenose pléistocène profonde à Spongiaires et Scléractiniaires dans la Fosse Hellénique. In: Journées d'études sur la systématique évolutive et la biogéographie en Méditerranée, Cagliari, 1980. Commission internationale pour l'exploration scientifique de la mer Méditerranée, Monaco, pp 133–136Google Scholar
  74. Zibrowius H (1982) Deep-water scleractinian corals from the southwestern Indian Ocean with crypts excavated by crabs, presumably Hapalocarcinidae. Crustaceana 43:113–120Google Scholar
  75. Zibrowius H, Ramos AA (1983) Oculina patagonica, Scléractiniaire exotique en Méditerranée — nouvelles observations dans le Sud-est de l'Espagne. Rapp Comm Int Mer Médit 28:303–306Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Helmut Schuhmacher
    • 1
    • 2
  • Helmut Zibrowius
    • 1
    • 2
  1. 1.Fachbereich 9 — HydrobiologieUniversität GHS EssenEssenFederal Republic of Germany
  2. 2.Centre d'Océanologie de Marseille (CNRS-URA41), Station Marine d'EndoumeUniversité d'Aix-Marseille 2MarseilleFrance

Personalised recommendations