European Spine Journal

, Volume 5, Issue 6, pp 394–399

Rip hump correction and rotation of the lumbar spine after selective thoracic fusion

  • A. J. F. Hosman
  • G. H. Slot
  • W. I. Beijneveld
  • J. van Limbeek
Original Article
  • 58 Downloads

Abstract

In this study a series of 32 patients with idiopathic scoliosis, managed with selective thoracic fusion, was reviewed. Classified according to King and instrumented with the H-frame, the patients were evaluated for curve correction, rib hump correction and postoperative shift in lumbar rotation. Age and follow-up averaged 19.4 and 2.4 years, respectively. The 32 patients had an average primary and lumbar curve correction of, respectively, 66% (6.0% correction loss) and 53% (3.4% correction loss). The respective values for postoperative rib hump correction and shift in apical lumbar rotation averaged 8° and 9.4° in type II King curves, 4.4° and 3.5° in type III and 11° and-5° in Type IV. Significant differences were noted between the curve types in rib hump correction and shift in lumbar rotation. The study showed that en bloc postoperative rotation of the compensatory lumbar segment, directed towards the rib hump, positively influences rib hump correction. This en bloc rotation of the unfused lumbar segments is induced by the correcting forces applied by the instrumentation. The unfused lumbar spine of a patient with a King type II curve shows a larger lumbar rotation shift and subsequent rib hump correction than that of a patient with a King type III curve. Together with factors such as lateral angulation, rib-vertebra angles and structural limitations, the rotational dynamics of the unfused lumbar spine seem to form an important component in the understanding and surgical management of scoliosis.

Key words

Idiopathic scoliosis Rib hump Vertebral rotation Lumbar spine Selective fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer R, Mostegl A, Hingshammer R (1988) Cotrel-Dubousset (CD) instrumentation for the correction of spinal curvature: first results in special consideration of derotation. Arch Orthop Trauma Surg 107:364–368Google Scholar
  2. 2.
    Bunnell WP (1984) An objective critetion for scoliosos screening. J Bone Joint Surg [Am] 66:1381–1387Google Scholar
  3. 3.
    Cobb JR (1984) Outline for the study of scoliosis. Am Acad Orthop Surg Inst Course Lect 5:261–275Google Scholar
  4. 4.
    Cotrel Y (1986) New instrumentation for surgery of the spine. Freud, LondonGoogle Scholar
  5. 5.
    Cotrel Y, Dubousset J, Guillaumat M (1988) New universal instrumentation in spinal surgery. Clin Orthop 13:10–29Google Scholar
  6. 6.
    Dickson JH, Archer IA (1986) Biomechanics of spinal deformity. J Bone Joint Surg [Br] 69:682Google Scholar
  7. 7.
    Dickson JH, Archer IA (1987) Surgical treatment of late onset idiopathic thoracic scoliosis. The Leeds procedure. J Bone Joint Surg [Br] 69:709–714Google Scholar
  8. 8.
    Ecker ML, Betz RR, Trent PS, et al (1988) CT evaluation of Cotrel-Dubousset instrumentation in idiopathic scoliosis. Spine 13:1141–1144Google Scholar
  9. 9.
    Hosman AJF, Slot GH, Beijneveld WJ, Limbeek van J, Kooijman MAP (1996) Correction of idiopathic scoliosis using the H-frame system. Eur Spine J 5:172–177Google Scholar
  10. 10.
    Johnston MV, Ottenbacher KJ, Reichardt CS (1995) Strong quasi-experimental designs for research on the effectiveness of rehabilitation. Am J Phys Med Rehabil 74:383–392Google Scholar
  11. 11.
    King HA, Moe JH, Bradford DS (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg [Am] 65:1302–1313Google Scholar
  12. 12.
    Kojima T, Kurokawa T (1992) Rotation vector, a new method for representation of three-dimensional deformity in scoliosis. Spine 17:1296–1303Google Scholar
  13. 13.
    Krismer M, Bauer R, Sterzinger W (1992) Scoliosis correction by Cotrel-Dubousset instrumentation: the effect of derotation and three-dimensional correction. Spine 17:S263-S269Google Scholar
  14. 14.
    Manson DE, Carango P (1991) Spinal decompensation in Cotrel-Dubousset instrumentation. Spine 16:S395-S403Google Scholar
  15. 15.
    Murrell GA, Coonrad RW, Moorman CT, Fitch RD (1993) An assessment of the reliability of the scoliometer. Spine 18:709–712Google Scholar
  16. 16.
    Perdriolle R (1979) La scoliose: son étude tridimentionelle. Maloine, ParisGoogle Scholar
  17. 17.
    Rajasekaran S, Dorgan JC, Taylor JF, Dangerfield PH (1994) Eighteen-level analysis of vertebral rotation following Harrington-Luque instrumentation in idiopathic scoliosis. J Bone Joint Surg [Am] 76:104–109Google Scholar
  18. 18.
    Richards BS (1992) Lumbar curve response in Type II idiopathic scoliosis after posterior instrumentation of the thoracic curve. Spine 17:S282-S286Google Scholar
  19. 19.
    Roaf R (1966) The basic anatomy of scoliosis. J Bone Joint Surg [Br] 48:786–792Google Scholar
  20. 20.
    Shufflebarger HL, Clark CE (1988) Cotrel-Dubousset instrumentation. Orthopedics 11:1435–1440Google Scholar
  21. 21.
    Shufflebrager JL, Ellis RD, Clark CE (1989) Cotrel-Dubousset instrumentarium (CDI) in adolescent idiopathic scoliosis: minium 2 year follow-up. Orthop Trans 13:79–80Google Scholar
  22. 22.
    Sommerville EW (1952) Rotational lordosis. The development of the single curve. J Bone Joint Surg 34:421–427Google Scholar
  23. 23.
    Thulbourne T, Gillespie R (1976) The rib hump in idiopathic scoliosis. J Bone Joint Surg [Br] 58:64–71Google Scholar
  24. 24.
    Transfield EE, Bradford DS, Coscia M, Cohen M, Thompson P (1989) Changes in segmental coupling and vertebral rotation following Cotrel-Dubousset instrumentation for idiopathic scoliosis. Orthop Trans 13:80Google Scholar
  25. 25.
    Transfield EE, Bradford DS, Boachie-Adjei O (1990) Three dimensional changes in the spine following Cotrel-Dubousset instrumentation for adolescent idiopathic scoliosis. In: Proceedings of the Sixth International Congress on Cotrel-Dubousset Instrumentation, Sauramps, Montpellier, September 1989Google Scholar
  26. 26.
    Webb JK, Burwell RG, Cole AA, Lieberman I (1995) Posterior instrumentation in scoliosis. Eur Spine J 4:2–5Google Scholar
  27. 27.
    Weiss HR (1995) Measurement of vertebral rotation: Perdriolle versus Raimondi. Eur Spine J 4:34–38Google Scholar
  28. 28.
    Wittebol P (1956) Idiopathic scoliosis (experimental investigation). Arch Chir Neerl 8:269–279Google Scholar
  29. 29.
    Wood KB, Transfield EE, Ogilvie JW, Schendel MJ, Bradford DS (1991) Rotational changes of the vertebral-pelvic axis following Cotrel-Dubousset instrumentation. Spine 16:S404-S408Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. J. F. Hosman
    • 1
  • G. H. Slot
    • 1
  • W. I. Beijneveld
    • 1
  • J. van Limbeek
    • 2
    • 3
  1. 1.Department of OrthopaedicsSint MaartenskliniekNijmegenThe Netherlands
  2. 2.Department of Research and DevelopmentSint MaartenskliniekNijmegenThe Netherlands
  3. 3.Department of RehabilitationSint MaartenskliniekNijnegenThe Netherlands

Personalised recommendations