Advertisement

European Journal of Nuclear Medicine

, Volume 4, Issue 6, pp 471–477 | Cite as

Calculation of residence time distributions of intravascular radioactive tracers in fields of external registration

  • Wolfram H. Knapp
  • Horst -J. Lüdecke
  • Josef Doll
Article
  • 30 Downloads

Abstract

Because of the physiological significance of the mean velocity of blood flow, indicator dispersion models are of special interest and posses practical relevance, if biological and extraneous variables can be altered. The variables being considered are flow characteristics of the streaming blood, tracer distribution at the entrance into the flow system, and the area in which impulses are collected to form the time-activity curve. Using a simplified version of the general convective diffusion equation (diffusion model) in which the diffusion constant D includes all propagation and mixing of the tracer, a simple numerical method can be applied. The method is used to determine influences of injection and changed regions of interest on the time-activity curve and the following parameters: appearance times, peak times, mean circulation times, and the times of the first inflection points. For this purpose, the range of D was determined in 14 patients by applying experimental data to the model. The calculations on the variables show, that the advantage of this method is its applicability to any experimental case by simply adapting the input data to the recordings.

Keywords

Diffusion Equation Dispersion Model Diffusion Constant Circulation Time Practical Relevance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

A

cross-sectional area of the flow tube

c, c0

concentration

Bo

v·Z/D (Bodenstein-number)

D

mixing coefficient of the diffusion model

f(ϱ)

dimensionless initial indicator concentration

F

flow

L

width of the detector field on the x-axis

t

time

T

Z/v

U, u

c/c 0 (solution of the partial differential equation; of the difference equation)

v

mean flow velocity

V

volume of the flow system

x

space coordinate in flow direction

Z

length of the flow system

ζ

x/Z

ϱ

t/T

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, W.E., Meyer, G., Bitter, F., Kampmann, H., Stauch, M.: Camera radiocardiography based on the first transit principle. J. Nucl. Biol. Med. 18, 44–52 (1974)Google Scholar
  2. Breuel, H.-P., de Vivie, R., Schmidt, B., Heimburg, P., Emrich, D.: Die klinische Bedeutung der Bestimmung von intrakardialen Kreislaufzeiten mit einem Radiopharmakon und einer EKG-gesteuerten Gamma-Kamera bei angeborenen und erworbenen Herzfehlern. Z. Kardiol. 63, 718–732 (1974)Google Scholar
  3. Cohn, P.F., Gorlin, R., Cohn, L.H., Collins, J.J.: Left ventricular ejection fraction as a prognostic guide in surgical treatment of coronary and valvular heart disease. Am. J. Cardiol. 34, 136–141 (1974)Google Scholar
  4. Donato, L., Giuntini, C., Lewis, M.L., Durand, J., Rochester, D.F., Harvey, R.M., Cournand, A.: Quantitative radiocardiography (I), (II), (III). Circulation 26, 174–199 (1962)Google Scholar
  5. Donato, J.: Basic concepts of radiocardiography. Seminars in Nucl. Med. 3, 111–130 (1973)Google Scholar
  6. Dow, P.: Estimates of cardiac output and central blood volume by dye dilution. Physiol. Rev. 36 (suppl. 2), 77–102 (1956)Google Scholar
  7. Feinendegen, L.E., Becker, V., Vyska, K., Schicha, H., Seipel, L.: Minimal cardiac transit times — diagnostic radiocardiography in heart disease. J. Nucl. Biol. Med. 16, 211–223 (1972)Google Scholar
  8. Gill, W.N., Sankarasubramanian, R.: Dispersion of a non-uniform slug in time-dependent flow. Proc. Roy. Soc. Lond. A 322, 101–117 (1971)Google Scholar
  9. González-Fernández, J.M.: Theory of the measurement of the dispersion of an indicator in indicator-dilution studies. Circ. Res. 10, 409–428 (1962)Google Scholar
  10. Hamilton, W.F.: Role of Starling concept in regulation of the normal circulation. Rev. 35, 160–168 (1955)Google Scholar
  11. Hofmann, H.: Der derzeitige Stand bei der Vorausberechnung der Verweilzeitverteilung in technischen Reaktoren. Chem. Engng. Sci. 24, 193–210 (1961)Google Scholar
  12. Knapp, W.H., Doll, J.: Eine automatisierte Methode zur Bestimmung von Kreislaufzeiten in der nuklearmedizinischen Herzdiagnostik. Nucl. Med. 16, 218–223 (1977)Google Scholar
  13. Lane, D.A., Patel, I.C., Sirs, J.A.: The variation of indicator dilution curves with velocity profile. Phys. Med. Biol. 20, 613–623 (1975)Google Scholar
  14. Maseri, A.: The practice of dilution methods for the estimate of cardiac output, pulmonary and ventricular blood volumes with radioisotopes. J. Nucl. Biol. Med. 16, 188–202 (1972)Google Scholar
  15. Mitchell, A.R.: Computational methods in partial differential equations. Chichester: John Wiley and Sons 1969Google Scholar
  16. Rossi, H.H., Powers, S.H., Dwork, B.: Measurement of flow in straight tubes by means of the dilution technique. Am. J. Physiol. 173, 103–108 (1953)Google Scholar
  17. Sarnoff, S.J., Mitchell, J.H.: The control of the function of the heart. In: Handbook of Physiology, W.F. Hamilton (ed.). Section 2: circulation I, pp. 489–532. Washington D.C.: American Physiological Society 1962Google Scholar
  18. Sheppard, C.W.: Mathematical considerations of indicator dilution techniques. Minn. Med. 15, 93–104 (1954)Google Scholar
  19. Stewart, G.N.: Research on the circulation time and on the influence which affect it. (III). J. Physiol. 15, 1 (1894)Google Scholar
  20. Strand, S.-E., Larsson, J.: Image artefacts at high photon fluence rates in single-crystal NaI(Tl) scintillation cameras. J. Nucl. Med. 19, 407–413 (1978)Google Scholar
  21. Ulrich, M.: Berechnung der Verweilzeitverteilung nach dem Durchmischungsmodell für Reaktionen beliebiger Ordnung. Chem.-Ing.-Techn. 43, 1248–1252 (1971)Google Scholar
  22. Vyska, K., Schicha, H., Becker, V., Seipel, L., Feinendegen, L.E.: Minimale kardiale Transitzeiten (MTTs) in der Herzdiagnostik-Messungen mit der Gamma-Retina V und Indium-113m. III. MTTs bei Myokardschädigung und nach Digitalisierung. Z. Kreislaufforschg. 61, 820–827 (1972)Google Scholar
  23. Vyska, K., Profant, N., Freundlieb, Chr., Schicha, H., Höck, A., Becker, V., Feinendegen, L.E.: Die theoretische Analyse minimaler kardiater Transitzeiten und die Messung der ventrikulären Ejektionsfraktion. In: Quality factors in nuclear medicine H. Munkner (ed.). Proc. 13. Int. Ann. Meeting Soc. Nucl. Med. in Kopenhagen, pp. 91.1–91.7. Kobenhavn: Fadl. s Forlag 1975Google Scholar
  24. Zierler, K.L.: Circulation times and the theory of indicator-dilution methods for determining blood flow and volume. In: Handbook of Physiology, W.F. Hamilton (ed.). Section 2: circulation I, pp. 585–615. Washington D.C.: American Physiological Society 1962Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Wolfram H. Knapp
    • 1
  • Horst -J. Lüdecke
    • 1
  • Josef Doll
    • 1
  1. 1.Institut für Nuklearmedizin am Deutschen KrebsforschungszentrumHeidelberg und Fachhochschule des SaarlandesSaarbrückenFederal Republic of Germany

Personalised recommendations