Advertisement

Cell and Tissue Research

, Volume 279, Issue 1, pp 183–197 | Cite as

Common general morphological pattern of peptidergic neurons in the arachnid brain: crustacean cardioactive peptide-immunoreactive neurons in the protocerebrum of seven arachnid species

  • Olaf Breidbach
  • Heinrich Dircksen
  • Rainer Wegerhoff
Article

Abstract

A polyclonal antiserum raised against crustacean cardioactive peptide labels 14 clusters of immunoreactive neurons in the protocerebrum of the spiders Tegenaria atrica and Nephila clavipes, and the harvestman (opilionid) Rilaena triangularis. In all species, these clusters possess the same number of neurons, and share similar structural and topological characteristics. Two sets of bilateral symmetrical neurons associated with the optic lobes and the arachnid “central body” were analysed in detail, comparing the harvestman R. triangularis and the spiders Brachypelma albopilosa (Theraphosidae), Cupiennius salei (Lycosidae), Tegenaria atrica (Agelenidae), Meta segmentata (Metidae) and Nephila clavipes (Araneidae). Sixteen neurons have been identified that display markedly similar axonal pathways and arborization patterns in all species. These neurons are considered homologues in the opilionid and the araneid brains. We presume that these putative phylogenetically persisting neurons represent part of the general morphological pattern of the arachmid brain.

Key words

Brain, invertebrate Brain mapping Supraoesophageal ganglion Homology Identified neurons Crustacean cardioactive peptide Araneus Brachypelma Cuptennius Meta Nephila Tegenaria Rilaena Chelicerata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson DT (1973) Embryology and phylogeny in annelids and arthropds Pergamon Press, OxfordGoogle Scholar
  2. Arbas EA, Meinertzhagen IA, Shaw SR (1991) Evolution in nervous systems. Annu Rev Neurosci 14:9–38Google Scholar
  3. Audehm U, Trube A, Dircksen H (1993) Patterns and projections of crustacean-cardioactive-peptide-immunoreactive neurons of the terminal ganglion of crayfish. Cell Tissue Res 272:473–485Google Scholar
  4. Babu KS (1985) Patterns of arrangement and connectivity in the central nervous system of arachnids. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 3–19Google Scholar
  5. Bergström J (1979) Morphology of fossil arthropods as a guide to phylogenetic relationships (1979) In: Gupta AP (ed) Arthropod phylogeny. Van Norstrand, New York, pp 3–56Google Scholar
  6. Breidbach O (1990) Constant topological organization of the coleopteran metamorphosing nervous system — analysis of persistent elements in the nervous system of Tenebrio molitor. J Neurobiol 21:990–1001Google Scholar
  7. Breidbach O (1992) Ist das Arthropoden-Hirn zweimal entstanden? Natur Museum 122:301–310Google Scholar
  8. Breidbach O (1994) Common “bauplan” of the arthropod nervous systems? In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates — an evolutionary and comparative approach. Birkhäuser, Basel (in press)Google Scholar
  9. Breidbach O, Dircksen H (1991) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nerve cord and the brain of the meal beetle Tenebrio molitor during postembryonic development. Cell Tissue Res 265:129–144Google Scholar
  10. Breidbach O, Kutsch W (1990) Structural homology of identified motoneurons in larval and adult stages of hemi- and holometabolous insects. J Comp Neurol 297:392–409Google Scholar
  11. Breidbach O, Wegerhoff R (1993) Neuroanatomy of the central nervous system of the harvestman, Rilaena triangularis (HERBST 1799) (Arachnida; Opiliones)—principal organization, GABA-like and serotonin-immunohistochemistry. Zool Anz 230:55–81Google Scholar
  12. Breidbach O, Wegerhoff R (1994) FMRFamide-like immunoreactive neurons in the brain of the beetle, Tenebrio molitor (Coleoptera: Tenebrionidae): Constancies and variations in development from the embryo to the adult. Int J Insect Morphol Embryol 29:383–404Google Scholar
  13. Bullock TH, Horridge GA (1965) Structure and function in the nervous systems of invertebrates, vol 2. Freeman, San FranciscoGoogle Scholar
  14. Cheung CC, Loi PK, Sylwester AB, Lee TD, Tublitz NJ (1992) Primary structure of a cardioactive neuropeptide from the tobacco hawkmoth, Manduca sexta. FEBS Lett 313:165–168Google Scholar
  15. Dircksen H (1994) Distribution and physiology of crustacean cardioactive peptide in arthropods. Can J Zool 71 (in press)Google Scholar
  16. Dircksen H, Keller R (1988) Immunocytochemical localization of CCAP, a novel crustacean cardioactive peptide in the nervous system of the shore crab, Carcinus maenas L. Cell Tissue Res 256:347–360Google Scholar
  17. Dircksen H, Müller A, Keller R (1991) Crustacean cardioactive peptide in the nervous system of the locust Locusta migratoria: an immunocytochemical study of the ventral nerve cord and peripheral innervation. Cell Tissue Res 263:439–457Google Scholar
  18. Foelix RF (1992) Biologie der Spinnen. Thieme, StuttgartGoogle Scholar
  19. Groome JR, Townley MA, De Tschaschell M, Tillinghast EK (1991) Detection and isolation of proctolin-like immunoreactivity in arachnids: possible cardioregulatory role for proctolin in the orb-weaving spiders Argiope and Araneus. J Insect Physiol 37:9–19Google Scholar
  20. Gupta AP (1987) Evolutionary trends in the central and mushroom bodies of the arthropod brain. A dilemma. In: Gupta AP (ed) Arthropod brain. Wiley, New York, pp 27–44Google Scholar
  21. Hammen L van der (1989) An introduction in comparative arachnology. SPB Academic Press, Den HaagGoogle Scholar
  22. Hanström B (1919) Zur Kenntnis des zentralen Nervensystems der Arachnoiden und Pantopoden. PhD thesis, Lund AB SkanskaGoogle Scholar
  23. Hanström B (1921) Über die Histologie und vergleichende Anatomie der Sehganglien und der Globuli der Araneen. Kungl Svenska Vetensk Akad Hand 61:1–39Google Scholar
  24. Hanström B (1923) Further notes on the central nervous system of arachnids, scorpions, phalangids and trap-door spiders. J Comp Neurol 35:249–272Google Scholar
  25. Hanström B (1926) Untersuchungen über die relative Größe der Gehirnzentren verschiedener Arthropoden unter Berücksichtigung der Lebensweise. Z Mikrosk Anat Forsch 7:135–190Google Scholar
  26. Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, BerlinGoogle Scholar
  27. Hanström B (1935) Fortgesetzte Untersuchungen über das Araneengehirn. Zool Jb Anat 59:455–478Google Scholar
  28. Holmgren E (1916) Zur vergleichenden Anatomie des Gehirns der Polychaeten, Onychophora, Xiphosuren, Arachniden, Crustaceen, Myriapoden und Insekten. Kungl Svensk Vetensk Handl 56:1–303Google Scholar
  29. Juberthie C (1983) Neurosecretory systems and neurohemal organs of terrestrial Chelicerata (Arachnida). In: Gupta AP (ed) Neurohemal organs of arthropods. Thomas, Springfield, Illinois, pp 149–203Google Scholar
  30. Kutsch W, Breidbach O (1994) Homologous structures in the nervous systems of Arthropoda. Adv Insect Physiol 24:1–113Google Scholar
  31. Lehman HK, Murgiuc CM, Miller TA, Lee TD, Hildebrand JG (1993) Crustacean cardioactive peptide in the sphinx moth, Manduca sexta. Peptides 14:735–741Google Scholar
  32. Meyer W, Schlesinger C, Poehling HM, Ruge W (1984) Comparative quantitative aspects of putative neurotransmitters in the central nervous system of spiders (Arachnida: Araneida). Comp Biochem Physiol [C] 78:357–362Google Scholar
  33. Nentwig W (1987) Ecophysiology of spiders. Springer, Berlin Heidelberg New York, pp 380–388Google Scholar
  34. Remane A (1956) Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik. Akad Verl Geest & Portig, LeipzigGoogle Scholar
  35. Schmid A, Duncker M (1993) Histamine immunoreactivity in the central nervous system of the spider Cupiennius salei. Cell Tissue Res 273:533–545Google Scholar
  36. Schmid A, Duncker M, Spörhase-Eichmann U (1990) Verteilung FMRFamid- und GABA-artiger Immunoreaktivität im ZNS der Jagdspinne Cupiennius salei. Verh Dtsch Zool Ges 83:639–640Google Scholar
  37. Seyfarth EA, Hammer K, Grünert U (1990) Serotonin-like immunoreactivity in the CNS of spiders. In: Elsner N, Roth G (eds) Brain-perception-cognition. Thieme, Stuttgart, p 331Google Scholar
  38. Seyfarth E, Hammer K, Spörhase-Eichmann U, Hörner M, Vullings HGB (1993) Octopamine immunoreactive neurons in the fused central nervous system of spiders. Brain Res 611:193–206Google Scholar
  39. Stangier J, Keller R (1990) Occurrence of the crustacean cardioactive peptide (CCAP) in the nervous system of the crayfish, Orconectus limosus. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 394–400Google Scholar
  40. Stangier J, Hilbich C, Beyreuther K, Keller R (1987) Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. Proc Natl Acad Sci USA 84:575–579Google Scholar
  41. Stangier J, Hilbich C, Keller R (1989) Occurrence of crustacean cardioactive peptide (CCAP) in the nervous system of an insect, Locusta migranoria. J Comp Physiol [B] 159:5–11Google Scholar
  42. Sternberger A (1979) The unlabeled antibody peroxidase-antiper-oxidase (PAP) method. Wiley, New York, pp 104–169Google Scholar
  43. Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62Google Scholar
  44. Strausfeld NJ, Weltzien P, Barth FG (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62Google Scholar
  45. Trube A, Audehm U, Dircksen H (1994) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nervous system of crayfish. J Comp Neurol (in press)Google Scholar
  46. Wegerhoff R, Breidbach O (1994) Comparative aspects of the Chelicerata nervous system. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates — an evolutionary and comparative approach. Birkhäuser, Basel (in press)Google Scholar
  47. Weltzien P (1988) Vergleichende Neuroanatomie des Spinnenhirns unter besonderer Berücksichtigung des Zentralkörpers. PhD thesis. University of Frankfurt, GermanyGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Olaf Breidbach
    • 1
  • Heinrich Dircksen
    • 2
  • Rainer Wegerhoff
    • 1
  1. 1.Institut für Angewandte ZoologieRheinische-Friedrich-Wilhelms-UniversitätBonnGermany
  2. 2.Institut für ZoophysiologieRheimische-Friedrich-Wilhelms-UniversitätBonnGermany

Personalised recommendations