Anatomy and Embryology

, Volume 156, Issue 2, pp 115–152 | Cite as

A golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes

  • Donald E. Schmechel
  • Pasko Rakic


Radial glial cells (epithelial cells of Ramón y Cajal) impregnated by a modified del Rio Hortega rapid Golgi method were studied in the occipital lobes of 38 rhesus monkeys from embryonic day 48 (E48) to birth which occurs at E165 and in 27 postnatal animals to day 365 (P365). Some radial glial cells are already recognized at E48 by their bipolar shape and elongated radial fiber, which terminates with characteristic endfeet on the walls of blood vessels or at the pial surface. At slightly older ages-between E60 and E70-all cells spanning the cerebral wall develop lamellate expansions along their radial fiber and their endfeet become PAS positive. After E60, some radial glia detach from the ventricular surface and their somas become displaced outwards in the cerebral wall. After this age, radial glial cells are easily distinguished from migrating neurons by their larger oval nucleus located in the ventricular or subventricular zone, radial fiber extending outwards to the pial surface where it terminates in one or more endfeet, and the delicate lamellate expansions on both radial fiber and soma.

Displaced radial glial cells have more closely packed lamellate expansions and display a range of transitional shapes leading to either fibrous or protoplasmic astrocytes. Between E95 and E140, when neuron migration to the visual cortex tapers off, perikarya of displaced radial glial cells form a conspicuous band at the outer border of the subventricular zone. Numerous transitional forms are present in the cortical plate at this age. After birth, fewer radial glial fibers are present in occipital lobe and their length is difficult to determine in the convoluted lateral cerebral wall expanded up to 10–20 mm. However, at P7 and P20, many radial fibers still span the medial cerebral wall in the depth of the calcarine fissure where it remains less than 2 mm thick. Even here, no fibers spanning the cerebral wall were seen in 17 animals from P50 to P200 despite the presence of well-impregnated transitional forms situated near the lateral ventricle and myriad astrocytes dispersed throughout the hemisphere. By P365, end of the first year, the few short remaining radial fibers belong to ependymal cells or mature astrocytes while all immature transitional forms have disappeared.

Key words

Nervous system Development Telencephalon Radial glial cells Primates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achucarro, N.: De l'évolution de la névroglie, et spécialement de ses relations avec l'appareil vasculaire. Trab. Inst. Cajal Invest. Biol. 13, 169–212 (1915)Google Scholar
  2. Angevine, J.B., Jr., Sidman, R.L.: Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature (London) 192, 766–768 (1961)Google Scholar
  3. Antanitus, D.S., Choi, B.H., Lapham, L.W.: The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence. Brain Res. 103, 613–616 (1976)Google Scholar
  4. Åström, E.-E.: On the early development of the isocortex in fetal sheep. Prog. in Brain Res. 26, 1–59 (1967)Google Scholar
  5. Babuchin, A.: Beiträge zur Entwicklung des Auges, besonders der Retina. Würzb. Naturwiss. Zschr. 4, 71–89 (1963)Google Scholar
  6. Bignami, A., Dahl, D.: Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. Comp. Neur. 153, 27–38 (1974a)Google Scholar
  7. Bignami, A., Dahl, D.: Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat: Nature 252, 55–56 (1974b)Google Scholar
  8. Bleier, R., Scott, G.: Ultrastructure of ependymal cells and tanycytes of the hypothalamic third ventricle. Abstract. Society for Neuroscience, Third Annual Meeting, 110. (1973)Google Scholar
  9. Boulder Committee: Embryonic vertebrate central nervous system: revised terminology. Anat. Rec. 166, 257–261 (1970)Google Scholar
  10. Castro, F. de: Algunas observaciones sobre la histogenesis de la neuroglia en el bulbo olfactivo. Trabajos Lab. Invest. 18, 83–109 (1920)Google Scholar
  11. Chan-Palay, V., Palay, S.L.: The form of velate astrocytes in the cerebellar cortex of monkey and rat: High voltage electron microscopy of rapid Golgi preparations. Z. Anat. Entwickl.-Gesch. 138, 1–19 (1972)Google Scholar
  12. Choi, B.H., Lapham, L.W.: Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res. 148, 295–311 (1978)Google Scholar
  13. Das, G.D.: Gliogenesis during embryonic development in the rat. Experientia 33, 1648–1649 (1977)Google Scholar
  14. Das, G.D., Lammert, G.L., McAllister, J.P.: Contact guidance and migratory cells in the developing cerebellum. Brain Res. 69, 13–29 (1974)Google Scholar
  15. Ebner, F.F., Colonnier, M.: Synaptic patterns in the visual cortex of turtle: an electron microscopic study. J. Comp. Neur. 160, 51–80 (1975)Google Scholar
  16. Fujita, S.: Application of light and electron microscopic autoradiography to the study of cytogenesis of the forebrain. In: Evolution of the forebrain. Phylogenesis and ontogenesis of the forebrain (R. Hassler and H. Stephen, eds.) pp. 180–196. Stuttgart: thieme, 1966Google Scholar
  17. Gaze, R., Watson, W.: Cell division and migration in the brain after optic nerve lesions. In: Growth of the nervous system (G.E.W. Wolstenholme and M. O'Connor, eds.) pp. 53–67. Boston: Little, Brown & Co., 1967Google Scholar
  18. Godina, G.: Istogenesi e differenziazione del neuroni e degli elementi gliali della corteccia cerebrale. Z. Zellforsch. 36, 401–435 (1951)Google Scholar
  19. Golgi, C.: Sulla fina anatomia degli organi centrali del sistema nervoso. Republished in: Opera Omnia, Hoepli, Milan, 1903, pp. 397–536 (1885)Google Scholar
  20. Henrickson, C.K., Vaughn, J.E.: Fine structural relationships between neurites and radial glial processes in developing mouse spinal cord. J. Neurocytol. 3, 659–675 (1974)Google Scholar
  21. Hicks, S.P., D'Amato, C.J.: Cell migrations to the isocortex in the rat. Anat. Rec. 160, 619–634 (1968)Google Scholar
  22. His, W.: Die Entwicklung des menschlichen Gehirns während der ersten Monate. Leipzig: Hirzel, 1904Google Scholar
  23. Ivy, G.O., Killackey, H.P.: Evidence for transient population of glial cells in the developing rat telencephalon as revealed by horseradish peroxidase. Brain Res. 158, 213–218 (1978)Google Scholar
  24. Jacobson, M.: Developmental neurobiology, Second Edition. New York: Plenum Press, 1978Google Scholar
  25. Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electronmicroscopy. J. Cell Biol. 27, 137A-138A (1965)Google Scholar
  26. Kölliker, A.V.: Zur Feineren Anatomie des centralen Nervensystems. Zweiter Beitrag: das Rückenmark. Z. wiss. Zool., 51 (1890)Google Scholar
  27. Kostović, I., Krmpatić-Nemanić, J., Kelović, Z.: The early development of glia in human neocortex. Rad Jug. Acad. Znan. Umijet. Natural Sciences Series 17, 155–159 (1975)Google Scholar
  28. Kuffler, S.W., Nicholls, J.G.: The physiology of neuroglial cells. Ergeb. Physiol. 57, 1–90 (1966)Google Scholar
  29. Kuhlenbeck, H.: Central nervous system of vertebrates. Vol. 3 Part I. Structural elements: Biology of nervous tissue. Basel: Karger, 1970Google Scholar
  30. Lenhossék, M.V.: Zur Kenntnis der ersten Entstehung der Nervenzellen und Nervenfasern beim Vogelembryo. Verh. X internat. Med. Cong. Berl. Abth. 2, 115–124 (1891)Google Scholar
  31. Lorente de Nó., R.: Studies on the structure of the cerebral cortex. I. The area entorhinalis. J. Psychol. Neurol. (Leipzig) 45, 381–438 (1935)Google Scholar
  32. Lund, R.D.: Development and plasticity of the brain: An introduction. Oxford: Oxford Univ. Press, 1978Google Scholar
  33. Magini, G.: Sur la névroglie et les cellules nerveuses cérébrales chez les foetus. Arch. ital. Biol. 9, 59–60 (1888a)Google Scholar
  34. Magini, G.: Nouvelles recherches histologiques sur le cerveau du foetus. Arch. Ital. Biol. 10, 384–387 (1888b)Google Scholar
  35. Millhouse, E.O.: Light and electron microscopic studies of the ventricular wall. Z. Zellforsch. 127, 149–174 (1972)Google Scholar
  36. Mountcastle, V.B.: An organizing principle for cerebral function: the unit module and the distributed system. In: Neuroscience: Fourth Study Program. (F.O. Schmitt and F.G. Worden, eds.) Cambridge: MIT Press, 1979Google Scholar
  37. Mugnaini, E., Forstrønen, P.: Ultrastructural observations on the astroglia in the cerebellar folia of the chick embryo. J. Ultrastructural Res. 14, 415–416 (1966)Google Scholar
  38. Müller, E.: Studien über Neuroglia. Arch. Mikro. Anat. 55, 11–62 (1900)Google Scholar
  39. Nowakowski, R.S., Rakic, P.: The mode of migration of neurons to hippocampus: a Golgi and electron microscopic analysis in fetal rhesus monkey. J. Neurocytol. (in press) (1979)Google Scholar
  40. Oksche, A.: Die pränatale und vergleichende Entwicklungsgeschichte der Neuroglia. Suppl. IV, 4–19 (1968)Google Scholar
  41. Palay, S.L.: The role of neuroglia in the organization of the central nervous system. In: Nerves as a tissue (K. Rodahl and B. Issekutz, eds.) pp. 3–10. New York: Hoeber Med. Div., Harper & Row, 1966Google Scholar
  42. Palay, S.L.: Morphology of neuroglial cells. In: Basic mechanisms of the epilepsies (M.M. Jasper, A.A. Ward, and A. Pope, eds.). Boston: Little, Brown & Co., 1969Google Scholar
  43. Penfield, W.: Oligodendroglia and its relation to classical neuroglia. Brain 47, 430–452 (1924)Google Scholar
  44. Penfield, W.: Neuroglia. Normal and pathological. In: Cytology and cellular pathology of the nervous system (W. Penfield ed.,) pp. 423–479. Vol. 2. New York: Hafner, 1939Google Scholar
  45. Peters, A., Feldman, M.: The cortical plate and molecular layer of the late rat fetus. Z. Anat. Entwickl.-Gesch. 141, 3–37 (1973)Google Scholar
  46. Peters, A., Palay, S.L.: An electron microscope study of the distribution and patterns of astroglial processes in the central nervous system. J. Anat. 99, 419 (1965)Google Scholar
  47. Peters, A., Palay, S.L., Webster, S.L.: The fine structure of the nervous system: the neurons and supporting cells. Philadelphia: Saunders, 1976Google Scholar
  48. Phelps, C.: The development of glio-vascular relationships in the rat spinal cord. An electron microscopic study. Z. Zellforsch. 128, 555–563 (1972)Google Scholar
  49. Pouwels, E.: On the development of the cerebellum of the trout Salmo gairdneri. V. Neuroglial cells and their development. Anat. Embryol. 153, 67–83 (1978)Google Scholar
  50. Rakic, P.: Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J. Comp. Neur. 141, 283–312 (1971a)Google Scholar
  51. Rakic, P.: Guidance of neurons migrating to the fetal monkey neocortex. Brain Research 33, 471–476 (1971b)Google Scholar
  52. Rakic, P.: Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neur. 145, 61–84 (1972)Google Scholar
  53. Rakic, P.: Kinetics of proliferation and latency between final division and onset of differentiation of the cerebellar stellate and basket neurons. J. Comp. Neur. 147, 523–546 (1973)Google Scholar
  54. Rakic, P.: Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183, 425–427 (1974)Google Scholar
  55. Rakic, P.: Cell migration and neuronal ectopias in the brain. In: Morphogenesis and malformation of the face and brain (D. Bergsma, ed.) pp. 95–129. Birth defects: Original series, Vol. 9. New York, N.Y.: Liss, 1975aGoogle Scholar
  56. Rakic, P.: Timing of major ontogenetic events in the visual cortex of the rhesus monkey. In: Brain mechanisms in mental retardation (N.A. Buchwald and M. Brazier, eds.) pp. 3–40. New York: Academic Press, 1975bGoogle Scholar
  57. Rakic, P.: Differences in the time of origin and in eventual distribution of neurons in areas 17 and 18 of the visual cortex in rhesus monkey. Exp. Brain Res. Suppl. 1, 244–248Google Scholar
  58. Rakic, P.: Neuronal migration and contact guidance in primate telencephalon. Postgrad. Med. Journal 54, 25–40 (1978)Google Scholar
  59. Ramón y Cajal, S.: Sur l'origine et les ramifications des fibres nerveuses de la moelle embryonnaire. Anat. Anz. 5, 85–95, 111–119 (1890)Google Scholar
  60. Ramón y Cajal, S.: Sur la structure de l'écorce cérébrale de quelques mammifères. La Cellule 7, 125–178 (1891)Google Scholar
  61. Ramón y Cajal, S.: La rétine des vertébrés. La Cellule 9, (1893)Google Scholar
  62. Ramón y Cajal, S.: Les nouvelles idées sur la structure du système nerveux chez l'homme et chez les mammiféres. Transl. M. Mathias-Duval. Paris: C. Reinwald & Cie 1895Google Scholar
  63. Ramón y Cajal, S.: Textura del sistema nervioso del hombre y vertebrados. Madrid, Moya 2 vol. (1899–1904)Google Scholar
  64. Ramón y Cajal, S.: Nouvelles observations sur l'évolution des neuroblastes, avec quelques remarques sur l'hypothèse neurogénétique de Hensen-Held. Anat. Anz. 23, 1–25 (1908)Google Scholar
  65. Ramón y Cajal, S.: Histologie du système nerveux de l'homme et des vertébrés paris, Maloine, Reprinted by Consejo Superior de Investigaciones Cientificas, Madrid, 1955 Vol. 2 (1911)Google Scholar
  66. Ramón y Cajal, S.: Contribucion al conocimiento de la neuroglia del cerebro humano. Trab. Lab. Invest. Biol. (Madrid) 11, 255–315 (1913)Google Scholar
  67. Ramón-Moliner, E.: A study of neuroglia. The problem of transitional forms. J. Comp. Neurol. 110, 157–171 (1958)Google Scholar
  68. Retzius, G.: Studien über Ependym und Neuroglia. Biol. Untersuch. Stockholm, N.S. 5, 9–26 1893Google Scholar
  69. Retzius, G.: Die Neuroglia des Gehirns beim Menschen und bei Säugenthiern. Biologische Untersuchungen 6, 1–24 (1894)Google Scholar
  70. Rickman, M., Wolff, J.R.: Morphological constellation of the initial step of glial differentiation in the neocortex of rat. Folia Morphol. 25, 231–234 (1977)Google Scholar
  71. Rio Hortega, P.: Estudios sobre la neuroglia. La glia de escasas radiaciones (oligodendroglia). Bol. Real. Soc. Espan. Hist. Nat. 21, 63–92 (1971)Google Scholar
  72. Robain, O.: Gliogenèse post-natale chez le lapin. J. Neurol. Sci. 11, 445–461 (1970)Google Scholar
  73. Sala y Pons, C.: La neuroglia de los vertebrados. Barcelona: Casa Prov. de Caridad, 1894Google Scholar
  74. Schmechel, D., Marangos, P.J., Zis, A.P., Brightman, M.W., Goodwin, F.K.: Brain enolases as specific markers of neuronal and glial cells. Science 199, 313–314 (1978)Google Scholar
  75. Schmechel, D.E., Rakic, P.: Arrested proliferation of radial glial cells during mid gestation in rhesus monkey. Nature (London) 277, 303–305 (1979)Google Scholar
  76. Shimada, M., Langman, J.: Cell proliferation, migration and differentiation in the cerebral cortex of the golden hamster. J. Comp. Neur. 139, 227–244 (1970)Google Scholar
  77. Sidman, R.L.: Autoradiographic methods and principles for study of the nervous system with thymidine-H3. In: Contemporary research methods in neuroanatomy (W.J.H. Nauta and S.O.E. Ebbesson, eds.) pp. 252–274. Berlin: Springer, 1970Google Scholar
  78. Somjen, G.G., Varon, S.S.: Neuron-glia interaction. Neurosci. Res. Prog. Bulletin, in press (1979)Google Scholar
  79. Stensaas, L.J.: The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. I. Fifteen millimeter stage, spongioblast morphology. J. Comp. Neur. 129, 59–70 (1967a)Google Scholar
  80. Stensaas, L.J.: The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. V. Sixty millimeter stage, glial cell morphology. J. Comp. Neur. 131, 423–436 (1967b)Google Scholar
  81. Stensaas, L.J.: An electronmicroscope study of the organization of the cerebral cortex of the 60 mm rabbit embryo. Z. Anat. Entwickl.-Gesch. 137, 335–347 (1972)Google Scholar
  82. Stensaas, L.J., Golson, B.C.: Ependymal and subependymal cells of the caudatopallial junction in the lateral ventricle of the neonatal rabbit. Z. Zellforsch. 132, 297–322 (1972)Google Scholar
  83. Stensaas, L.J., Stensaas, S.S.: Light microscopy of glial cells in turtles and birds. Z. Zellforsch. 91, 315–340 (1968)Google Scholar
  84. Studnička, F.K.: Untersuchungen über den Bau des Ependyms der nervösen Centralorgane. Anat. Hefte. 15, 303–430 (1900)Google Scholar
  85. Thomas, A.: Contribution à l'étude du développment des cellules de l'écorce cérébrale par la méthode de Golgi. C.R. Soc. Biol. Paris 46, 66–68 (1894)Google Scholar
  86. Trachtenberg, M.C., Pollen, D.A.: Neuroglia: Biophysical properties and physiologic function. Science 167, 1248–1252 (1970)Google Scholar
  87. Uza, S., Smelser, G.K.: Electron microscopic study of the development of retinal Müllerian cells. Inv. Ophthal. 12, 295–307 (1973)Google Scholar
  88. Vignal, W.: Recherches sur le développement des éléments des couches corticales du cerveau et du cervelet de l'homme. Arch. physiologie, 4th serie, II, (Paris) 311–395. (1888)Google Scholar
  89. Wechsler, W.: Die Entwicklung der Gefäße und perivasculären Gewebsräume im Zentralnervensystem von Hühnern. Z. Anat. Entwickl.-Gesch. 127, 367–395 (1965)Google Scholar
  90. Wechsler, W., Meller, K.: Electron microscopy of neuronal and glial differentiation in the developing brain of the chick. In: Developmental neurology, progress in brain research 26, 93–144 (C.G. Berhard and J.P. Schade, eds.) Amsterdam: Elsevier Publ. Co., 1967Google Scholar
  91. Zecevic, N., Rakic, P.: Differentiation of Purkinje cells and the relationship to other components of developing cerebellar cortex in man. J. Comp. Neurol. 167, 27–48 (1976)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Donald E. Schmechel
    • 1
  • Pasko Rakic
    • 1
  1. 1.Section of NeuroanatomyYale University, School of MedicineNew HavenUSA

Personalised recommendations