Advertisement

Behavioral Ecology and Sociobiology

, Volume 9, Issue 1, pp 79–81 | Cite as

Foaming in Pachycondyla: A new defense mechanism in ants

  • Ulrich Maschwitz
  • Karla Jessen
  • Eleonore Maschwitz
Article

Summary

When disturbed, two species of Malayan Pachycondyla release foam threads more than 10 cm in length or foam piles. The source of the proteinaceous foam is the enlarged venom gland, which is probably frothed up by air from the spiracles of the spiracular plates. The Dufour's gland normally producing hydrocarbons in stinging ants is atrophied. Therefore, absence of the Dufour's gland could be essential to the foaming ability, since the lipophilic hydrocarbons inhibit froth production in protein solutions. The release of foam is a mechanically acting defense mechanism, which is very effective against small mass-attacking ants. Pachycondyla species are also able to sting effectively.

Keywords

Hydrocarbon Defense Mechanism Protein Solution Venom Gland Froth Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bingham CT (1903) The fauna of British India, including Ceylon and Burma. Hymenoptera II: Ants and cockoo wasps. Taylor and Francis, LondonGoogle Scholar
  2. Blum MS, Hermann HR (1978) Venoms and venom apparatus of the Formicidae: Myrmeciinae, Ponerinae, Dorylinae, Pseudomyrmicinae, Myrmicinae and Formicinae. In: Bettini S (ed) Arthropod venoms. Springer, Berlin Heidelberg New York (Handbook of Experimental Pharmacology, vol 48, pp 661–690)Google Scholar
  3. Carpenter GDH, Eltrinham H (1938) An audible emission of defensive froth by insects. With an appendix on the anatomical structures concerned in a moth. Proc Zool Soc (Ser A) 243–252Google Scholar
  4. Eisner T, Hendry LB, Peakall DB, Meinwald J (1971) 2,5-Dichlorophenol from ingested herbicide in defensive secretion of grasshoppers. Science 172:277–278Google Scholar
  5. Eisner T, Tappey HJD, Aneshansley W, Tschinkel WR, Silberglied RE, Meinwald J (1977) Chemistry of defensive secretions of bombardier beetles (Brachinini, Metriini, Ozaenini, Paussini). J Insect Physiol 23:1383–1386Google Scholar
  6. Feigl F (1960) Tüpfelanalyse. Akademische Verlagsgesellschaft, FrankfurtGoogle Scholar
  7. Jessen K, Maschwitz U, Hahn M (1979) Neue Abdominaldrüsen bei Ameisen. I. Ponerini (Formicidae: Ponerinae). Zoomorphologie 94:49–66Google Scholar
  8. Maschwitz U (1975) Old and new chemical weapons in ants. Proc IUSSI Congr, Dijon, pp 41–45Google Scholar
  9. Maschwitz U, Kloft W (1971) Morphology and function of the venom apparatus of bees, wasps, ants and caterpillars. In: Bücherl W, Buckley EE (eds) Venomous animals and their venoms, vol 3. Academic Press, New York London, pp 1–60Google Scholar
  10. Maschwitz U, Hahn M, Schönegge P (1979) Paralysis of prey in ponerine ants. Naturwissenschafter 66:213Google Scholar
  11. Schildknecht H (1970) The defensive chemistry of land and water beetles. Angew Chem Int Ed Engl 9:1–9Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Ulrich Maschwitz
    • 1
  • Karla Jessen
    • 1
  • Eleonore Maschwitz
    • 1
  1. 1.Fachbereich Biologie-Zoologie, der J.W. Goethe-UniversitätFrankfurt/MGermany

Personalised recommendations