Behavioral Ecology and Sociobiology

, Volume 17, Issue 1, pp 61–66 | Cite as

Honeybees maximize efficiency by not filling their crop

  • Paul Schmid-Hempel
  • Alejandro Kacelnik
  • Alasdair I. Houston
Article

Summary

Honeybees often abandon non-depleting food sources with a partially filled crop. This behaviour does not maximise the net rate of energy extraction from the food sources, and thus contradicts predictions of some common models for central place foragers. We show that including the metabolic costs of transport of nectar leads to models that predict partial crop-loading. Furthermore, the observed crop loads of honeybees are less consistent with those predicted by maximization of delivery rate to the hive (net energetic gain/ unit time), than with those predicted by maximization of energetic efficiency (net energetic gain/unit energy expenditure). We argue that maximization of energetic efficiency may be an adaptation to a limited flight-cost budget. This constraint is to be expected because a worker's condition seems to deteriorate as a function of the amount of flight performed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bastian J, Esch H (1970) The nervous control of the indirect flight muscles of the honey bee. Z Vergl Physiol 67:307–324Google Scholar
  2. Benedictis PA De, Gill FB, Hainsworth FR, Pyke GH, Wolf LL (1978) Optimal meal size in hummingbirds. Am Nat 112:301–316Google Scholar
  3. Beutler R (1937) Über den Blutzucker der Bienen. Z Vergl Physiol 24:76–115Google Scholar
  4. Boch R (1956) Die Tänze der Bienen bei nahen und fernen Trachtquellen. Z Vergl Physiol 38:136–167Google Scholar
  5. Cheverton J, Kacelnik A, Krebs JR (1985) Optimal foraging: constraints and currencies. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Fortschr Zool 31:109–126Google Scholar
  6. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Heinrich B (1975) Thermoregulation by bumblebees. II. Energetics of warm-up and free flight. J Comp Physiol 96:155–166Google Scholar
  8. Heinrich B (1979) Keeping a cool head: honeybee thermoregulation. Science 205:1269–1271Google Scholar
  9. Heran H (1962) Wie beeinflußt eine zusätzliche Last die Fluggeschwindigkeit der Honigbiene? Verh Dtsch Zool Ges 1962:346–354Google Scholar
  10. Hodges CM (1981) Optimal foraging in bumblebees: Hunting by expectation. Anim Behav 29:1166–1171Google Scholar
  11. Jongbloed J, Wiersma CAG (1934) Der Stofwechsel der Honigbiene während des Fliegens. Z Vergl Physiol 21:519–533Google Scholar
  12. Kacelnik A (1984) Central place foraging in starlings (Sturnus vulgaris). I. patch residence time. J Anim Ecol 53:283–300Google Scholar
  13. Kacelnik A, Houston AI (1984) Some effects of energy costs on foraging strategies. Anim Behav 32:609–614Google Scholar
  14. Kosmin NP, Alpaton WW, Resnitschenko MS (1932) Zur Kenntnis des Gaswechsels und des Energieverbrauchs der Biene in Beziehung zu deren Aktivität. Z Vergl Physiol 17:408–422Google Scholar
  15. Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z Vergl Physiol 34:299–345Google Scholar
  16. Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vergl Physiol 36:391–432Google Scholar
  17. Lucas JR (1983) The role of foraging constraints and variable prey encounter in optimal diet choice. Am Nat 122:191–209Google Scholar
  18. Michener CD (1974) The social behavior of the bees. Belknap, Harvard University, Cambridge, MassGoogle Scholar
  19. Neukirch A(1982) Dependence of the life span of the honeybee (Apis mellifera) upon flight performance and energy consumption. J Comp Physiol 146:35–40Google Scholar
  20. Nuñez J (1970) The relationship between sugar flow and foraging and recruiting behavior of honey bees (Apis mellifera L.). Anim Behav 18:527–538Google Scholar
  21. Nuñez J (1974) Metabolism and activity of the worker bee. Proc 24th Int Beekeep Congr, Buenos Aires, pp 298–299Google Scholar
  22. Nuñez J (1982) Honeybee foraging strategies at a food source in relation to its distance from the hive and the rate of sugar flow. J Apic Res 21:139–150Google Scholar
  23. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Stairs GR,Mitchell RD (eds) Analysis of ecological systems. Ohio University PressGoogle Scholar
  24. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Monographs in population biology, vol 12. Princeton University Press, Princeton, NJGoogle Scholar
  25. Pyke GH (1978) Optimal foraging in bumblebees and coevolution with their plants. Oecologia (Berl) 36:281–293Google Scholar
  26. Rothe U (1983) Stoffwechselphysiologische Untersuchungen an ruhenden, laufenden und fliegenden Honigbienen (Apis mellifera carnica). Ph D thesis, Universität SaarbrückenGoogle Scholar
  27. Scholze E, Pichler H, Heran H (1964) Zur Entfernungsschätzung der Bienen nach dem Kraftaufwand. Naturwissenschaften 3:69–70Google Scholar
  28. Seeley TD (1985) The information-center strategy of the honeybee. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Fortschr Zool 31:75–90Google Scholar
  29. Sotavolta O (1954) On the fuel consumption of the honeybee (Apis mellifica L.) in flight experiments. Ann Zool Soc Vanamo 16:1–27Google Scholar
  30. Waddington KD, Holden LR (1979) Optimal foraging: On flower selection by bees. Am Nat 114:179–196Google Scholar
  31. Withers P (1981) The effect of ambient air pressure on oxygen consumption of resting and hovering honeybees. J Comp Physiol 141:433–437Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Paul Schmid-Hempel
    • 1
  • Alejandro Kacelnik
    • 1
  • Alasdair I. Houston
    • 1
  1. 1.Edward Grey Institute, Department of ZoologyUniversity of OxfordOxfordEngland
  2. 2.Zoologisches Institut der UniversitätBaselSwitzerland

Personalised recommendations