Molecular and General Genetics MGG

, Volume 246, Issue 5, pp 600–604

An unusual organization of the genes encoding cytochrome b559 in Chlamydomonas reinhardtii: psbE and psbF genes are separately transcribed from different regions of the plastid chromosome

  • Tsafrir S. Mor
  • Itzhak Ohad
  • Joseph Hirschberg
  • Himadri B. Pakrasi
Original Paper

Abstract

The psbE and psbF genes encode the apoproteins of cytochrome b559, an essential component of the pigment protein complex photosystem II. Together with psbL and psbJ, these genes constitute a single operon in all photosynthetic organisms examined thus far. We have cloned and sequenced the psbE and psbF genes of the Chlamydomonas reinhardtii plastid genome. The predicted amino-terminal domains of both polypeptides are more basic than those of other organisms, and the sequence of the psbE gene product indicates a departure from the ‘positive-inside’ rule for the insertion of proteins in the thylakoid membrane. Northern blot analysis demonstrated that psbE is transcribed into a 0.3 kb mRNA, while transcription of psbF and psbL genes results in a 0.9 kb transcript. The splitting of the psbEFLJ operon into separate transcription units suggests a unique mechanism of regulation of expression of these genes in C. reinhardtii.

Key words

Cytochrome b559 Photosystem II Chloroplast gene expression Chlamydomonas reinhardtii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbudurai PR, Pakrasi HB (1993) Mutational analysis of the PsbL protein of photosystem 11 in the cyanobacterium Synechocystis sp. PCC 6803. Z Naturforschung 48c:267–274Google Scholar
  2. Babcock GT, Widger WR, Cramer WA, Oertling WA, Metz JG (1985) Axial ligands of chloroplast cytochrome b 559: identification and requirement for a heme-cross-linked polypeptide structure. Biochemistry 24:3638–3645Google Scholar
  3. Barber J, de Las Rivas J (1993) Direct reduction of cytochrome b 559 by photoreduced pheophytin and its possible protection against photoinhibition. Proc Natl Acad Sci USA 90:10942–10946Google Scholar
  4. Boudreau E, Otis C, Turmel M (1994) Conserved gene clusters in the highly rearranged chloroplast genomes of Chlamydomonas moewusii and Chlamydomonas reinhardtii. Plant Mol Biol 24:585–602Google Scholar
  5. Cantrell A, Bryant DA (1988) Nucleotide sequence of the genes encoding cytochrome b 559 from the cyanelle genome of Cyanophora paradoxa. Photosynth Res 16:65–81Google Scholar
  6. Carrillo N, Seyer P, Tyagi AK, Herrmann RG (1986) Cytochrome b-559 genes from Oenothera hookeri and Nicotiana tabacum show a remarkably high degree of conservation as compared to spinach. Curr Genet 10: 619–624Google Scholar
  7. Cramer WA, Furbacher PN, Szczepaniak A, Tae G-S (1990) The chloroplast b cytochromes: crosslinks, topography, and functions. In: Baltschevsky M (ed) Current research in photosynthesis. Vol III, Kluwer, Dordrecht pp 221–230Google Scholar
  8. Cushman JC, Christopher DA, Little MC, Hallick RB, Price CA (1988) Organization of the psbE, psbF, orf38, and orf42 gene loci on the Euglena gracilis chloroplast genome. Curr Genet 13:173–180Google Scholar
  9. Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352Google Scholar
  10. Fong SE, Surzcycki SJ (1992) Organization and structure of plastome psbF, psbL, petG and ORF712 genes in Chlamydomonas reinhardtii. Curr Genet 21:527–530Google Scholar
  11. Fukuzawa J, Kohchi T, Sano T, Shirai H, Umesono K, Inokuchi H, Ozeki H, Kanji O (1988) Structure and organization of the Marchantia polymorpha chloroplast genome. III. G region from rbcL to trnI (CAU). J Mol Biol 203:333–351Google Scholar
  12. Gavel Y, Steppuhn J, Herrmann R, von Heijue G (1991) Positive-inside rule applies to thylakoid membrane proteins. FEBS Lett 282:41–46Google Scholar
  13. Haley J, Bogorad L (1990) Alternative promoters are used for genes within maize chloroplast polycistronic transcription units. Plant Cell 2: 323–333Google Scholar
  14. Herrmann RG, Alt J, Schiller B, Widger WR, Cramer WA (1984) Nucleotide sequence of the gene for apocytochrome b-559 on the spinach plastid chromosome: implications for the structure of the membrane protein. FEBS Lett 176: 239–244Google Scholar
  15. Hird SM, Willey DL, Dyer TA, Gray JC (1986) Location and nucleotide sequence of the genes for cytochrome b-559 in wheat chloroplast DNA. Mol Gen Genet 203:95–100Google Scholar
  16. Kolosov VL, Klezovich ON, Zolotarev AS (1989) Nucleotide sequence of the rye chloroplast DNA fragment, comprising psbE and psbF genes. Nucleic Acids Res 17: 1760Google Scholar
  17. Krupinska K, Berry-Lowe SL (1988) Characterization and in vitro expression of th ecytochrome b-559 genes of barley. I. Localization and sequence of the genes. Carlsberg Res Commun 53:43–55Google Scholar
  18. Logemann J, Schell J, Eillmizer L (1987) Improved method for the isolation of RNA from plant tissue. Anal Biochem 163:16–20Google Scholar
  19. Nagatsuka T, Fukuhara S, Akabori K, Toyoshima Y (1991) Disintegration and reconstitution of photosystem II reaction center core complex. Biochim Biophys Acta 1057:223–231Google Scholar
  20. Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of Dl and D2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84:109–112Google Scholar
  21. Nedbal L, Samson G, Whitmarsh J (1992) Redox state of a one-electron component controls the rate of photoinhibition of photosystem II. Proc Natl Acad Sci USA 89:7929–7933Google Scholar
  22. Ohad I, Siekevitz P, Palade GE (1967) Biogenesis of chloroplast membranes. I. Plastid differentiation in a dark grown algae mutant (Chlamydomonas reinhardtii). J Cell Biol 35:521–552Google Scholar
  23. Pakrasi HB, Williams JGK, Arntzen CJ (1988) Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b 559 in photosystem II. EMBO J 7: 325–332Google Scholar
  24. Pakrasi HB, Nyhus KJ, Granok H (1990) Targeted deletion mutagenesis of the β subunit of cytochrome b 559 protein destabilizes the reaction center of photosystem II. Z Naturforschung 45c:423–429Google Scholar
  25. Rochaix J-D (1992) Post-transcriptional steps in the expression of chloroplast genes. Annu Rev Cell Biol 8:1–28.Google Scholar
  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  27. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  28. Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168.Google Scholar
  29. Takahashi Y, Goldschmidt-Clermont M, Soen S-Y, Franzen LG, Rochaix J-D (1991) Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J 10: 2033–2040Google Scholar
  30. Thompson LK, Brudvig GW (1988) Cytochrome b 559 may function to protect photosystem II from photoinhibition. Biochemistry 27:6653–6658Google Scholar
  31. Turnmel M, Lemieux B, Lemieux C (1988) The chloroplast genome of the green alga Chlamydomonas moewusii: localization of protein coding genes and transcriptionally active regions. Mol Gen Genet 214:412–419Google Scholar
  32. Willey DL, Gray JC (1989) Two small open reading frames are co-transcribed with the pea chloroplast genes for the polypeptides of cytochrome b 559. Curr Genet 15: 213–220Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Tsafrir S. Mor
    • 1
  • Itzhak Ohad
    • 1
  • Joseph Hirschberg
    • 3
  • Himadri B. Pakrasi
    • 2
  1. 1.Department of Biological Chemistry, Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of BiologyWashington UniversitySt. LouisUSA
  3. 3.Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations