Advertisement

Bulletin of Volcanology

, Volume 57, Issue 1, pp 18–32 | Cite as

Source of Ash Zone 1 in the North Atlantic

  • C. Lacasse
  • H. Sigurdsson
  • H. Jóhannesson
  • M. Paterne
  • S. Carey
Original Paper

Abstract

Geochemical evidence shows that the silicic component of the widespread Ash Zone 1 in the North Atlantic is derived from a major ignimbrite-forming eruption which occurred at the Katla caldera in southern Iceland during the transition from glacial to interglacial conditions in Younger Dryas time. Both trace and major element evidence of the rhyolitic products excludes the Öræfajökull volcano as a source. The high-Ti basaltic component in the marine ash zone can also be attributed to contemporaneous eruption in the Katla volcanic complex. Dispersal of tephra from this event is primarily attributed to the generation of co-ignimbrite ash columns in the atmosphere, with ash fallout on both sea ice and on the ocean floor north and east of Iceland. Owing to the changing ocean circulation characteristics of the glacial regime, including suppression of the Irminger Current and a stronger North Atlantic Current, tephra was rafted on sea ice south into the central North Atlantic and deposited as dispersed Ash Zone 1. Sediments south of Iceland also show evidence of the formation of ash turbidites, generated either by the entrance of pyroclastic flows into the sea, or during discharge of jökulhlaups or glacier bursts from this subglacial eruption.

Key words

Ash Zone 1 Katla volcano Sólheimar ignimbrite Co-ignimbrite ash Volcaniclastic turbidites Pyroclastic flows Jökulhlaup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björk S, Ingólfsson O, Haflidason H, Hallsdóttir M, Andersen NJ (1992) Lake Torfadalsvatn: a high resolution record of the North Atlantic ash zone 1 and the last glacial-interglacial environmental changes in Iceland. Boreas 21:1–7Google Scholar
  2. Björnsson H (1977) Könnun á jöklum med rafsegulbylgjum. Studies of glaciers with electromagnetic waves (in Icelandic). Náttúrufrœdingurinn 47:184–194Google Scholar
  3. Björnsson H, Palsson F, Gudmundsson MT (1994) The topography of the Katla cadera beneath the ice cap Myrdalsjökull, South-Iceland. EOS, Trans AGU 75:321Google Scholar
  4. Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147Google Scholar
  5. Borchardt GA, Aruscavage PJ, Millard HT Jr (1972) Correlation of the Bishop ash, a Pleistocene marker bed, using instrumental neutron activation analysis. Sedim Petrol 42:301–306Google Scholar
  6. Bouma AH (1962) Sedimentology of Some Flysch Deposits. Elsevier, Amsterdam, pp 1–168Google Scholar
  7. Bramlette MN, Bradley WH (1941) Geology and biology of North Atlantic deep-sea cores between Newfoundland and Ireland: I. Lithology and geologic interpretation. US Geol Surv Prof Pap 196-A:1–34Google Scholar
  8. Carey S, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18 1980, eruption of Mount St. Helens volcano. J Geophys Res 87:7061–7072Google Scholar
  9. Carmichael ISE (1967) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnetian silicates. Contrib Mineral Petrol 14:36–64Google Scholar
  10. Carswell DA (1983) The volcanic rocks of the Sólheimajökull area, southern Iceland. Jökull 33:61–71Google Scholar
  11. Cornell W, Carey S, Sigurdsson H (1983) Computer simulation of transport and deposition of the Campanian Y-5 ash. J Volcanol Geotherm Res 17:89–109Google Scholar
  12. Craig RA (1965) The Upper Atmosphere: Meteorology and Physics. Academic Press, New York, pp 1–509Google Scholar
  13. Einarsson EH (1982) Súra gjóskubergid á Sólheimum og vídar í Myrdal. The acid tephra layer in Solheimar and elsewhere in Myrdalur (In Icelandic). Eldur er í Nordri. Sögufélag, Reykjavík, 17–28Google Scholar
  14. Einarsson EH, Larsen G, Thórarinsson S (1980) The Sólheimar tephra layer and the Katla eruption of ∼ 1357. Acta Natur Island 28:24 ppGoogle Scholar
  15. Einarsson t (1972) Edlispœttir jardar of jardsaga Islands. Geophysics and the geologic history of Iceland (In Icelandic). Almenna Bókafœlagid, Reykjavík, pp 1–267Google Scholar
  16. Fillon RH, Miller GH, Andrews JT (1981) Terrigenous and in Labrador Sea hemipelagic sediments and paleoglacial events on Baffin Island Over the last 100000 years. Boreas 10:107–124Google Scholar
  17. Grousset FE, Labeyrie L, Sinko JA, Cremer M, Bond G, Duprat J, Cortijo E, Huon S (1993) Patterns of ice-rafted detritus in the glacial north Atlantic (40°–50°N). Paleooceanography 8:175–192Google Scholar
  18. Imbrie J, Hayes JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. Milankovitch and Climate, Eds. A. L. Berger et al., Part 1: D. Reidel Publishing Co., 269–305Google Scholar
  19. Jakobsson SP (1979) Petrology of Recent basalts of the Eastern Volcanic Zone, Iceland. Acta Natur Island 26:103 ppGoogle Scholar
  20. Jónsson J (1986) Eyjafjallapistlar IV. Notes on Eyjafjoll IV (In Icelandic). Utivist 12:25–39Google Scholar
  21. Jónsson J (1987) Gjóskubergid í Skógaheidi og Myrdal. The tephra deposit in Skogaheidi and Myrdalur (In Icelandic). Jökull 37:82–84Google Scholar
  22. Karlsson Th (1969) Hafísmyndun, hafísrek of hafisspár. Formation of sea ice, ice drift and iceforecasting (In Icelandic). In: Hafísinn, ed. M. A. Einarsson. Almenna Bókafélagid. Reykjavík, 224–244Google Scholar
  23. Kellogg TB (1973) Late Pleistocene climatic record in Norwegian and Greenland Sea deep-sea cores. PhD Thesis, Colombia University: 1–545Google Scholar
  24. Kvamme T, Mangerud J, Furnes H, Ruddiman WF (1989) Geochemistry of Pleistocene ash zones in cores from the North Atlantic. Norsk Geol Tidsk 69:251–272Google Scholar
  25. Lacasse C (1991) Tephra from deep-sea core SU9032, south of Iceland-marine research cruise Paléocinat (June 15th–July 25th, 1990). Unpubl BSc Thesis, Univ Iceland, Science Institute: 1–36Google Scholar
  26. Lacasse C, Carey S, Sigurdsson H, Paterne M, Guichard F (1994) North Atlantic deep-sea sedimentation of Late Quaternary tephra from the Iceland hotspot. Marine Geology, submittedGoogle Scholar
  27. Larsen G (1981) Tephrochronology by microprobe glass analysis. In: Tephra Studies, S. Self & R. S. J. Sparks (eds), D. Reidel Publishing Co, Dordrecht 95–103Google Scholar
  28. Long D, Morton AC (1987) An ash fall within the Loch Lomond stadial. J Quat Sci 2:97–101Google Scholar
  29. Mangerud J, Lie SE, Furnes H, Kristiansen IL, Lomo L (1984) A Younger Dryas ash bed in western Norway, and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic. Quat Res 21:85–104Google Scholar
  30. Mohn H (1878) Askregnen den 29 de-30 te Marts, 1875. Forhandlonger, Videnskabssilskabet, Christiania aar 1877, No. 10, ChristianiaGoogle Scholar
  31. Nielsen CH, Sigurdsson H (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am Mineral 66:547–552Google Scholar
  32. Norddahl H (1982) Liós vikurlög frá seinni hluta sídasta jökulskeids í Fnjóskadal. Light tephra layers from late part of the last glacial in Fnjoskadalur (In Icelandic). Eldur er í nordri. Sögufélag, Reykjavík, 167–175Google Scholar
  33. Norddahl H (1983) Late Quaternary stratigraphy of Fnjóskadalur, central north Iceland. Lundqua Thesis Vol. 12. Lund Univ: 1–78Google Scholar
  34. Norddahl H, Haflidason H (1992) The Skógar Tephra: a younger Dryas marker in north Iceland. Boreas 21:23–41Google Scholar
  35. Oskarsson N, Sigvaldason GE, Stéinthórsson S (1982) A dynamic model of rift zone petrogenesis and the regional petrology of Iceland. J Petrol 23:28–74Google Scholar
  36. Palais JM, Sigurdsson H (1989) Petrologic evidence of volatile emissions from major historic and pre-historic volcanic eruptions. AGU Monogr 52:31–53Google Scholar
  37. Palmen EH (1969) Atmospheric Circulation Systems: their Structure and Physical Interpretation. Academic Press, New York, pp 1–603Google Scholar
  38. Prestvik T (1979) Petrology of hybrid intermediate and silicic rocks from Öræfajökull, southeast Iceland. Geol Fören Stockholm Föhandl 101, Pt 4:299–307Google Scholar
  39. Ram M, Gayley RI (1991) Long-range transport of volcanic ash to the Greenland ice sheet. Nature 349:401–404Google Scholar
  40. Reiter ER (1971) Atmospheric Transport Processes, Part 2: Chemical Tracers. US Atomic Energy Commission, pp 1–382Google Scholar
  41. Robson GR (1956) The volcanic geology of Vestur-Skaftafellssysla. PhD Thesis, Durham Univ: 1–259Google Scholar
  42. Ruddiman WF (1987) Northern oceans. In: Ruddiman WF, Wright HE Jr. North America and Adjacent Oceans During the Last Deglaciation. Geology of America, Vol. K-3. Geological Society of America, Boulder, pp 137–154Google Scholar
  43. Ruddiman WF, Glover LK (1972) Vertical mixing of ice-rafted volcanic ash in North Atlantic sediments. Geol Soc Am Bull 83:2817–2836Google Scholar
  44. Ruddiman WF, Glover LK (1975) Subpolar North Atlantic circulation at 9300 yr BP: faunal evidence. Quat Res 5:361–389Google Scholar
  45. Ruddiman WF, McIntyre A (1973) Time-transgressive deglacial retreat of polar water from the North Atlantic. Quat Res 3:117–130Google Scholar
  46. Sarna-Wojcicki AM, Morrison SD, Meyer CE, Hillhouse JW (1987) Correlation of upper Cenozoic tephra layers between sediments of the western United States and eastern Pacific Ocean and comparison with biostratigraphic and magnetostratigraphic age data. Geol Soc Am Bull 98:207–223Google Scholar
  47. Sejrup HP, Sjóholm J, Furnes H, Beyer I, Eide L, Jansen E, Manguerud J (1989) Quaternary tephrachronology on the Iceland Plateau, north of Iceland. J Quat Sci 4:109–114Google Scholar
  48. Sigurdsson H (1970) The petrology and chemistry of the Setberg volcanic region and the intermediate and acid rocks of Iceland. PhD Thesis, Durham Univ: 1–321Google Scholar
  49. Sigurdsson H (1982) Utbreidsla íslenskra gjóskulaga á botni Atlantshafs. Distribution of Icelandic tephra layers on the Atlantic ocean floor (In Icelandic). Eldur er í nordri, Sögufélag, Reykjavík, 119–127Google Scholar
  50. Sigurdsson H, Carey S (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bull Volcanol 51:243–270Google Scholar
  51. Sigurdsson H, Loebner B (1981) Deep-sea record of Cenozoic explosive volcanism in the North Atlantic. Tephra Studies, S. Self & R. S. J. Sparks (eds), D. Reidel Publishing Co., Dordrecht, 289–316Google Scholar
  52. Sjóholm J, Sejrup HP, Furnes H (1991) Quaternary, volcanic ash zones on the Iceland Plateau, southern Norwegian Sea. J Quat Sci 6:159–173Google Scholar
  53. Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Phil Trans Roy Soc London 299:241–273Google Scholar
  54. Sæmundsson K (1982) Oskjur á virkum eldfjallasvœdum. Calderas in the active volcanic zones (In Icelandic). Eldur er í nordri, Sögufélag. Reykjayík, 221–239Google Scholar
  55. Sæmundsson K (1991) Jardfrœdi Kröflusvœdisins. The geology of the Krafla region (In Icelandic). In: A. Gardarson and A. Einarsson (eds) Náttúra Myvatns, Hid Islenska Náttúrufrœdifélag, Reykjavík, 25–95Google Scholar
  56. Thórarinsson S (1967) The eruption of Hekla 1947–1948, I. Soc Sci Isl. Leiftur HF, Reykjavík, 170 ppGoogle Scholar
  57. Thórarinsson S (1975) Katla og annáll Kötlugosa. Katla and the record of Katla eruptions (In Icelandic). Arbók Ferdafélags Islands, 125–149Google Scholar
  58. Wadhams P (1986) The ice cover. In: Hurdle BG (ed) The Nordic Seas. Springer Verlag, New York, pp 21–87Google Scholar
  59. Wilson CJN (1985) The Taupo eruption, New Zealand II. The Taupo ignimbrite. Phil Trans Roy Soc London A 314:229–310Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • C. Lacasse
    • 1
  • H. Sigurdsson
    • 1
  • H. Jóhannesson
    • 2
  • M. Paterne
    • 3
  • S. Carey
    • 1
  1. 1.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA
  2. 2.Museum of Natural HistoryReykjavíkIceland
  3. 3.Centre des Faibles RadioactivitésGif-sur-YvetteFrance

Personalised recommendations