Advertisement

Zeitschrift für vergleichende Physiologie

, Volume 44, Issue 3, pp 268–291 | Cite as

The discrimination of polarized light by Octopus: a behavioural and morphological study

  • M. F. Moody
  • J. R. Parriss
Article

Summary

  1. 1.

    Groups of octopuses were trained to discriminate between different directions of the electric vector of plane polarized light coming from a small underwater torch.

     
  2. 2.

    Clear discrimination was shown between vertical and horizontal, and between 45° and 135° oblique directions of the electric vector.

     
  3. 3.

    The possible ways in which the animal might base its discrimination on the perception of scattering or reflection patterns in its environment are examined, and it is concluded that they do not provide a satisfactory explanation.

     
  4. 4.

    The discriminations probably involve specialised retinal photoreceptors, so some electron microscopical findings are presented concerning the structure of the receptor layer of the retina. The tubules of the two rhabdomeres on opposite sides of any one retinula cell are often approximately parallel, but those attached to different retinula cells can have quite different directions.

     
  5. 5.

    Theoretical reasons are given for supposing that the rhabdomere tubules show dichroism (though this might be difficult to observe); polarized light should be absorbed preferentially when its electric vector lies parallel to the long axis of a tubule. If the rhabdomeres do indeed show this dichroism, most of the receptor units of the octopus retina should give different responses for different directions of the electric vector of polarized light.

     
  6. 6.

    This hypothesis is shown to be consistent with both the observed discriminations and the fine structure of the receptor layer of the retina.

     
  7. 7.

    The connection between these results and the square “grid” organisation of the receptor layer of the retina is discussed.

     

Keywords

Reflection Retina Fine Structure Morphological Study Theoretical Reason 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Boycott, B. B., and J. Z. Young: The comparative study of learning. Symp. Soc. exp. Biol, IV Animal Behaviour, 432–453 (1950).Google Scholar
  2. Brown, P. K., and P. S. Brown: Visual pigments of the octopus and cuttlefish. Nature (Lond.) 182, 1288–1290 (1958).Google Scholar
  3. Collins, F. D., R. M. Love and R. A. Morton: The preparation of rhodopsin and the chemical composition of rod outer segments. Biochem. J. 48, XXXV (1951).Google Scholar
  4. —: Studies in rhodopsin. 5. Chemical analysis of retinal material. Biochem. J. 51, 669–673 (1952).Google Scholar
  5. Denton, E. J.: The contributions of the oriented photosensitive and other molecules to the absorption of the whole retina. Proc. roy. Soc. B 150, 78–94 (1959).Google Scholar
  6. Fernández-Morán, H.: Fine structure of the light receptors in the compound eyes of insects. Exp. Cell Res., Suppl. 5, 586–644 (1958).Google Scholar
  7. Frisch, K. v.: Gelöste und ungelöste Rätsel der Bienensprache. Naturwissenschaften 35, 12–23, 38–43 (1948).Google Scholar
  8. —: Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia (Basel) 5, 142–148 (1949).Google Scholar
  9. —: Die Sonne als Kompaß im Leben der Bienen. Experientia (Basel) 6, 210–221 (1950).Google Scholar
  10. —, M. Lindauer u. K. Daumer: Über die Wahrnehmung polarisierten Lichtes durch das Bienenauge. Experientia (Basel) 16, 289–301 (1960).Google Scholar
  11. Goldsmith, T. H., and D. E. Phillpot: The microstructure of the compound eyes of insects. J. biophys. biochem. Cytol. 3, 429–440 (1957).Google Scholar
  12. Grenacher, H.: Abhandlungen zur vergleichenden Anatomie des Auges. I. Die Retina der Cephalopoden. Abh. naturforsch. Ges. Halle 16, 209–256 (1883 bis 1886).Google Scholar
  13. Hubrard, R., and St. George, R. C. C.: The rhodopsin system of the squid. J. gen. Physiol. 41, 501–528 (1958).Google Scholar
  14. Ivanoff, A., and T. H. Waterman: Factors, mainly depth and wavelength, affecting the degree of underwater light polarization. Sears Foundation: J. Marine Res. 16, No. 3, 283–307 (1958).Google Scholar
  15. Kalmus, H.: Orientation of animals to polarized light. Nature (Lond.) 184, 228–230 (1959).Google Scholar
  16. Kropf, A., P. K. Brown and R. Hubbard: Lumi- and meta-rhodopsins of squid and octopus. Nature (Lond.) 183, 446–448 (1959).Google Scholar
  17. Miller, W. H.: Morphology of the ommatidia of the compound eye of Limulus. J. biophys. biochem. Cytol. 3, 421–428 (1957).Google Scholar
  18. Moody, M. F., and J. R. Parriss: The discrimination of polarized light by Octopus. Nature (Lond.) 186, 839–840 (1960).Google Scholar
  19. —, and J. D. Robertson: The fine structure of some retinal photoreceptors. J. biophys. biochem. Cytol. 7, 87–91 (1960).Google Scholar
  20. Robertson, J. D.: The unit membrane. Chap. 7 of “Anatomical Society Symposium” (publ. E. Arnold). (In press.)Google Scholar
  21. Schmidt, W. J.: Polarisationsoptische Analyse eines Eiweiß-Lipoid-Systems, erläutert am Außenglied der Sehzellen. Kolloid-Z. 84, 137–148 (1938).Google Scholar
  22. Schultze, M.: Die Stäbchen in der Retina der Cephalopoden und Heteropoden. Arch. mikr. Anat. 5, 1–24 (1869).Google Scholar
  23. Sjöstrand, F. S., and T. Gierer: Unpublished data quoted on p. 139 of F. S. Sjöstrand — The ultrastructure of the retinal receptors of the vertebrate eye. Ergebn. Biol. 21, 128–160 (1959).Google Scholar
  24. Stockhammer, K.: Zur Wahrnehmung der Schwingungsrichtung des linear polarisierten Lichtes bei Insekten. Z. vergl. Physiol. 38, 30–83 (1956).Google Scholar
  25. —: Die Orientierung nach der Schwingungsrichtung linear polarisierten Lichtes und ihre sinnesphysiologischen Grundlagen. Ergebn. Biol. 21, 23–56 (1959).Google Scholar
  26. Sutherland, N. S.: Visual discrimination of orientation by Octopus. Brit. J. Psychol. 48, 55–71 (1957).Google Scholar
  27. —: Visual discrimination of shape by Octopus. Squares and triangles. Quart. J. exp. Psychol. 10, 40–47 (1958).Google Scholar
  28. —, and W. R. Muntz: Simultaneous discrimination training and preferred directions of motion in visual discrimination of shape in Octopus Vulgaris Lamark. Pubbl. Staz. zool. Napoli 31, 109–126 (1959).Google Scholar
  29. Vries, H. de, and J. W. Kuiper: Optics of the insect eye. Ann. N.Y. Acad. Sci. 74, 196–203 (1958).Google Scholar
  30. Waddington, C. H., and M. Perry: Demonstration at the conference convened by the editorial board of the J. Embryol. exp. Morph., Paris, September 1959.Google Scholar
  31. Waterman, T. H.: Interaction of polarized light and turbidity in the orientation of Daphnia and Mysidium. Z. vergl. Physiol. 43, 149–172 (1960).Google Scholar
  32. Wells, M. J.: Factors affecting reactions to Mysis by newly hatched Sepia. Behaviour 8, 96–111 (1958).Google Scholar
  33. Wolken, J. J.: Retinal structure. Mollusc cephalopods: Octopus, Sepia. J. biophys. biochem. Cytol. 4, 835–838 (1958).Google Scholar
  34. Young, J. Z.: Regularities in the retina and optic lobes of Octopus in relation to form discrimination. Nature (Lond.) 186, 836–839 (1960).Google Scholar
  35. - (1961). The retina of Cephalopods and its degeneration after optic nerve section. (To be published).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • M. F. Moody
    • 1
  • J. R. Parriss
    • 1
  1. 1.Department of AnatomyUniversity College LondonUK

Personalised recommendations