Unit studies on the retina of dragonflies

  • G. A. Horridge


The dorsal part of the adult eye contains mainly uniform blue-sensitive receptors with peak near 380 nm in Anax and near 410 nm in Libellula. This is not a simple rhodopsin type of curve.
  1. 2.

    The larval eye and the ventral part of the adult eye contain receptors with a wide range of spectral sensitivity curves, with peaks from 420–520 nm in Anax and 450–550 nm in Libellula. Many of these can be derived from a typical rhodopsin curve when allowance is made for self-absorption in very long receptors.

  2. 3.

    For most adult receptors, rotation of the plane of polarization by 90° from the optimum is equivalent to a decrease of only 60–70 % in intensity.

  3. 4.

    The acceptance angle curve is approximately a Gaussian normal curve with width of 1.0–1.8° at linear half height. A few units have complex fields which may be artefacts.

  4. 5.

    Retinula unit responses in larval compound eyes resemble those of the adult but the larval units are slower in response and usually more sensitive to rotation of the plane of polarization.

  5. 6.

    There are eight retinula cells arranged in two tiers in each ommatidium.

  6. 7.

    In the dark, pigment grains move away from the tip of the cone and the palisade around the rhabdom increases. These effects could increase the sensitivity by a change in the anatomy.

  7. 8.

    In an eye of this type the ERG is an unsatisfactory tool, the angles of acceptance must be measured very carefully, and experiments with a single electrode have only a limited interpretation.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum, H., u. G. Kolb: Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden. Z. vergl. Physiol. 60, 450–477 (1968).Google Scholar
  2. —, u. V. V. Zwehl: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol. 48, 357–384 (1964).Google Scholar
  3. Bennett, R. R., J. Tunstall, and G. A. Horridge: Spectral sensitivity of single retinula cells of the locust. Z. vergl. Physiol. 55, 195–206 (1967).Google Scholar
  4. Bruckmoser, P.: Die spektrale Empfindlichkeit einzelner Sehzellen des Rückenschwimmers Notonecta glauca L. (Heteroptera). Z. vergl. Physiol. 59, 187–204 (1968).Google Scholar
  5. Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol. 16, 86–109 (1962).Google Scholar
  6. Burtt, E. T., W. T. Catton, and G. L. Rogers: Optics of the compound eye in relation to increase in size. Proc. XII Congr. Ent. London 1964, Sect. 3, 227 (1965).Google Scholar
  7. Dartnall, H. I. A.: The interpretation of spectral sensitivity curves. Brit. med. Bull. 9, 24–30 (1953).Google Scholar
  8. Exner, S.: Die Physiologie der fazettierten Augen von Krebsen und Insekten. Leipzig u. Wien: Franz Deuticke 1891.Google Scholar
  9. Götz, K. G.: Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964).Google Scholar
  10. Goldsmith, T. H.: Do flies have a red receptor? J. gen. Physiol. 49, 265–287 (1965).Google Scholar
  11. Hesse, R.: Untersuchungen über die Organe der Lichtempfindung bei niederen Tieren. VII. Von den Arthropodenaugen. Z. wiss. Zool. 70, 347–473 (1901).Google Scholar
  12. Horridge, G. A., and P. B. T. Barnard: Movement of palisade in locust retinula cells when illuminated. Quart. J. micr. Sci. 106, 131–135 (1965).Google Scholar
  13. Jörschke, H.: Die Facettenaugen der Orthopteren und Termiten. Z. wiss. Zool. 111, 153–280 (1914).Google Scholar
  14. Kirschfeld, K.: Discrete and graded receptor potentials in the compound eye of the fly Musca. In: The functional organization of the compound eye (C. G. Bernhard, ed.) p. 291–308. Oxford: Pergamon Press 1966.Google Scholar
  15. Langer, H.: Spektrometrische Untersuchung der Absorptionseigenschaften einzelner Rhabdomere im Facettenauge. Verh. dtsch. zool. Ges. 29, 325–338 (1965).Google Scholar
  16. —: Grundlagen der Wahrnehmung von Wellenlänge und Schwingungsebene des Lichtes. Verh. dtsch. zool. Ges. 30 Suppl., 195–233 (1966).Google Scholar
  17. —, and B. Theorello: Microspectrophotometric assay of visual pigments in single rhabdomeres of the insect eye. In: The functional organization of the compound eye (C. G. Bernhard, ed.), p. 145–150. Oxford: Pergamon Press 1966.Google Scholar
  18. Marks, W. B.: Visual pigments of single goldfish cones. J. Physiol. (Lond.) 178, 14–32 (1965).Google Scholar
  19. Mazokin-Porshniakov, G. A.: Colorimetric study of vision in the dragonfly. Biophysics 4, 46–57 (1959).Google Scholar
  20. Naka, K. I.: Recording of retinal action potentials from single cells in the insect compound eye. J. gen. Physiol. 44, 571–584 (1961).Google Scholar
  21. —, and K. Kishida: Retinal action potentials during dark and light adaptation. In: The functional organization of the compound eye (C. G. Bernhard, ed.), p. 251–266. Oxford: Pergamon Press 1966.Google Scholar
  22. Oguma, K.: A histological study on compound eyes of dragonflies. Entomol. Mag. (Tokyo) 3, 101–107 (1917).Google Scholar
  23. Ruck, P.: The components of the visual system of a dragonfly. J. gen. Physiol. 49, 289–307 (1965).Google Scholar
  24. Scholes, J. H.: Discontinuity of the excitation process in locust visual cells. Cold Spr. Harb. Symp. quant. Biol. 30, 517–528 (1966).Google Scholar
  25. - In press (1969).Google Scholar
  26. Seitz, G.: Der Strahlengang im Appositionsauge von Calliphora erythrocephala (Meig.). Z. vergl. Physiol. 59, 205–231 (1968).Google Scholar
  27. Shaw, S. R.: Polarized light responses from crab retinula cells. Nature (Lond.) 211, 92–93 (1966).Google Scholar
  28. —: Simultaneous recording from two cells in the locust retina. Z. vergl. Physiol. 55, 183–194 (1967).Google Scholar
  29. —: Coupling between receptors in the eye of the drone honeybee. J. gen. Physiol. 50, 2480 (1968a).Google Scholar
  30. - Ph. D. Thesis. St. Andrews (1968b).Google Scholar
  31. Tunstall, J., and G. A. Horridge: Electrophysiological investigation of the optics of the locust retina. Z. vergl. Physiol. 55, 167–182 (1967).Google Scholar
  32. Washizu, Y., D. Burkhardt, and P. Streck: Visual fields of single retinula cells and interommatidial inclination in the compound eye of the blowfly Calliphora erythrocephala. Z. vergl. Physiol. 48, 413–428 (1964).Google Scholar
  33. Westfall, M. J.: The synonymy of Libellula auripennis Burmeister and Libellula jesseana Williamson, and a description of a new species Libellula needhami (Odonata). Trans. Amer. ent. Soc. 69, 17–43 (1943).Google Scholar
  34. Wiedemann, I.: Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z. vergl. Physiol. 49, 526–542 (1965).Google Scholar
  35. Zimmermann, K.: Über die Facettenaugen der Libelluliden, Phasmiden und Mantiden. Zool. Jb., Abt. Anat. u. Ontog. 37, 1–36 (1914).Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • G. A. Horridge
    • 1
  1. 1.Gatty Marine Laboratory and Department of Natural HistoryUniversity of St. AndrewsScotland

Personalised recommendations