Zeitschrift für vergleichende Physiologie

, Volume 74, Issue 1, pp 81–102 | Cite as

Single unit response of the Toad's (Bufo americanus) caudal thalamus to visual objects

  • J. -P. Ewert


In the toad, Bufo americanus, single units of the caudal thalamus were sensitive to either moving or stationary visual objects. Furthermore, some units responded to tactile as well as visual stimulation. On the basis of analysis of the response characteristics of more than 300 single units, the following provisional classification is proposed:
  1. 1.

    Spontaneously active units which did not seem to have sensory inputs.

  2. 2.

    Units which responded only to tactile stimulation (usually bilateral). The ipsilateral input was typically weaker than the input from the contralateral skin.

  3. 3.

    Units with relatively small excitatory receptive visual fields (ERF: 15°–30°) that were best activated by moving black objects of 10° or more in size. To diffuse light changes they showed “off”-responses.

  4. 4.

    Large-field units whose excitatory receptive fields (ERF) included the entire contralateral visual field, or the whole visual field, as seen via both eyes. Most of these units were typically responsive to each new kind of object motion, but they quickly adaptated to a repeated movement within a particular region of the field.

  5. 5.

    Units that seemed to be variants of types 3 and 4 had ERF's that could change their size, according to circumstances that are not yet known: (a) “Small field” units that could double their size along either the horizontal or vertical axis, (b) Large field units that had a distinct “blind area” centered about the rostral midline; the width of this blind spot could narrow down from the usual 60° distance to only 20–10°. (c) Large field units that were continuously sensitive to the ipsilateral eye, but following tactile stimulation of the contralateral side would respond to contralateral visual movement as well.

  6. 6.

    Units that were maximally stimulated by dark objects moved in the “z-axis”. Although the ERF usually included the entire visual field, movements toward the eye from the dorsal direction were most effective.

  7. 7.

    Darkness-sensitive units included (a) those with a tonic discharge following the dimming of room lights, and (b) others that gave tonic discharge to light-on and were inhibited during darkness.

  8. 8.

    Spontaneously active units with either excitatory (ERF) or inhibitory receptive fields (IRF) that seemed to include the entire visual field. Any moving object within the IRF caused an immediate inhibition, followed by a gradual return of activity to the background level. Some of these units also had a smaller ERF within a large IRF.

  9. 9.

    Units activated by moving objects that continued to discharge for 10 seconds or more after the object had disappeared (“memory-units”).

  10. 10.

    Units with some of the above characteristics that had the additional property of giving a prolonged response to stationary objects. The ERF-sizes varied from 30° to 90°.



Visual Field Visual Object Tactile Stimulation Black Object Blind Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abplanalp, P.: Some subcortical connections of the visual system in tree shrews and squirrels. Brain, Behav. and Evol 1–4.-Conference on “Subcortical visual systems”. M. I. T. Cambridge, Mass.: Basel: S. Karger 1970.Google Scholar
  2. Branston, N. M., Fleming, D. G.: Efferent fibers in the frog optic nerve. Exp. Neurol. 20, 611–623 (1968).Google Scholar
  3. Ewert, J.-P.: Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 295, 90–98 (1967a).Google Scholar
  4. —: Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte durch elektrische Mittelhirnreizung. Z. vergl. Physiol. 54, 455–481 (1967b).Google Scholar
  5. —: Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beutefangund Fluchtverhalten der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. 61, 41–70 (1968).Google Scholar
  6. —: Das Beutefangverhalten Zwischenhirn-defekter Erdkröten (Bufo bufo L.) gegenüber bewegten und ruhenden visuellen Mustern. Pflügers Arch. 306, 210–218 (1969a).Google Scholar
  7. —: Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L.). Pflügers Arch. 308, 225–243 (1969b).Google Scholar
  8. —: Neural mechanisms of prey-catching and avoidance behavior in the toad (Bufo bufo L.) Brain Behav. and Evol 1–4.-Conference on “Subcortical visual systems”. M.I.T. Cambridge, Mass. Basel: S. Karger 1970.Google Scholar
  9. - Aufnahme und Verarbeitung visueller Informationen im Beutefang- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Verh. Dtsch. Zool. Ges. Köln, 218–226 (1970).Google Scholar
  10. - Borchers, H.-W.: Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. in press (1971).Google Scholar
  11. —, Rehn, B.: Quantitative Analyse der Reiz-Reaktionsbeziehungen bei visuellem Auslösen des Fluchtverhaltens der Wechselkröte (Bufo viridis Laur.). Behaviour 35, 212–234 (1969).Google Scholar
  12. —, Speckhardt, I., Amelang, W.: Visuelle Inhibition und Exzitation im Beutefangverhalten der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. 68, 84–110 (1970).Google Scholar
  13. Gaze, R. M.: The representation of the retina on the optic lobe of the frog. Quart. J. exp. Physiol. 43, 475–486 (1968).Google Scholar
  14. —, Keating, M. J.: Receptive field properties of single units from the visual projection to the ipsilateral tectum in the frog. Quart. J. exp. Physiol. 55, 143–152 (1970).Google Scholar
  15. Grüsser, O. J., Grüsser-Cornehls, U.: Die Informationsverarbeitung im visuellen System des Frosches. In: Kybernetik, p. 331–360. München: Oldenbourg 1968.Google Scholar
  16. —, Finkelstein, D., Henn, V., Patutschnik, M., Butenandt, E.: A quantitative analysis of movement detecting neurons in the frog's retina. Pflügers Arch. ges. Physiol. 292, 100–106 (1967).Google Scholar
  17. Horn, G., Hill, M.: Responsiveness to sensory stimulation of units in the superior colliculus and adjacent tectotegmental regions of the rabbit. Exp. Neurol. 14, 199–223 (1966).Google Scholar
  18. —: Modifications of receptive fields of cells in the visual cortex occuring spontaneously and associated with bodyly tilt. Nature (Lond.) 221, 186–188 (1969).Google Scholar
  19. Ingle, D.: Visual releasers of prey-catching behavior in frogs and toads. Brain, Behav. Evol. 1, 500–518 (1968).Google Scholar
  20. —: Visuomotor functions of the frog's optic tectum. Brain, Behav. and Evol 1–4.— Conference on “Subcortical Visual Systems”. M. I. T. Cambridge, Mass.: Basel: S. Karger 1970.Google Scholar
  21. - Prey-catching behavior of anurans toward moving and stationary objects Vision Res., in press (1971).Google Scholar
  22. Keating, M. J., Gaze, R. M.: Observations on the “surround” properties of the receptive fields of frog retinal ganglion cells. Quant. J. exp. Physiol. 55, 129–142 (1970).Google Scholar
  23. Lázár, G.: Efferent pathways of the optic tectum in the frog. Acta biol. Acad. Sci. hung. 20, 171–183 (1969).Google Scholar
  24. —, Székeley, Gy.: Golgi studies on the optic center of the frog. J. Hirnforsch. 9, 329–344 (1967).Google Scholar
  25. Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., Pitts, W. H.: What the frog's eye tells the frog's brain. Proc. Inst. Radio. Eng. 47, 1940–1945 (1959).Google Scholar
  26. —, Maturana, H. R., Pitts, W. H., McCulloch, W. S.: Two remarks on the visual system of the frog. In: Sensory communication, ed. W. A. Rosenblith, pp. 757 to 776. Cambridge, Mass.: M. I. T. Press 1961.Google Scholar
  27. Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., Pitts, W. H.: Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. 43, Suppl. 129–175 (1960).Google Scholar
  28. Muntz, W. R. A.: Microelectrode recordings from the diencephalon of the frog (Rana pipiens) and a blue-sensitive system. J. Neurophysiol. 25, 699–711 (1962).Google Scholar
  29. Pickering, S. G., Varju, D.: Delayed response of ganglion cells in the frog retina: The influence of stimulus parameters upon the length of the delay time. Vision Res. 9, 865–879 (1969).Google Scholar
  30. Rezvin, A. M.: Some characteristics of wide-field units in the brain of the pigeon. Brain, Behav. and Evol 1–4.-Conference on “Subcortical visual systems”. M. I. T. Cambridge, Mass.: Basel: S. Karger 1970.Google Scholar
  31. Rubinson, K.: Projections of the tectum opticum of the frog. Brain, Behav. Evol. 1, 529–561 (1968).Google Scholar
  32. Scalia, F., Gregory, K.: Retinofugal projection of the postsynaptic neurons. Brain Behav. and Evol 1–4. Conference on “Subcortical visual systems”. M. I. T. Cambridge Mass. Basel: S. Karger 1970.Google Scholar
  33. —, Knapp, H., Halpern, M., Riss, W.: New observations on the retinal projection in the frog. Brain, Behav. Evol. 1, 324–353 (1968).Google Scholar
  34. Spinelli, D. N.: Receptive field organization of ganglion cells in the cat's retina. Exp. Neurol. 19, 291–315 (1967).Google Scholar
  35. — and Pribram, K. H.: Neural correlates of stimulus response and reinforcement. Brain Res. 17, 377–385 (1970).Google Scholar
  36. Sprague, J. M., Marchiafava, P. L., Rizzolatti, G.: Unit response to visual stimuli in the superior colliculus of the unanesthetized mid-pontine cat. Arch. ital. Biol. 106, 169–193 (1968).Google Scholar
  37. Székeley, Gy.: The diencephalic and mesencephalic optic centers in the frog. Vis. Res., in press (1971).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • J. -P. Ewert
    • 1
  1. 1.Zoological InstituteTechnical UniversityDarmstadtGermany

Personalised recommendations