Advertisement

Zeitschrift für vergleichende Physiologie

, Volume 68, Issue 2, pp 154–174 | Cite as

E-Vector and wavelength discrimination by retinular cells of the crayfish Procambarus

  • Talbot H. Waterman
  • Hector R. Fernández
Article

Summary

  1. 1.

    Receptor potentials have been recorded intracellularly from single retinular cells in the anterior and dorsal quadrants of the compound eye of the crayfish Procambarus (Fig. 1) stimulated with equal quantum flashes of linearly polarized monochromatic light. Comparisons between two orthogonal stimulus e-vectors respectively parallel and perpendicular to the microvilli of each receptor cell's rhabdomere were made sequentially in about one minute's running time at 20 nm intervals between 400 and 740 nm (Fig. 2).

     
  2. 2.

    Of the 91 cells studied 17 responded maximally in the violet (av. λmax= 440 nm) whereas the other 74 cells were most responsive in the yellow-orange (av.λmax=594 nm) (Table 1). For the latter group the λmax of individual cells ranged widely from 538 to 634 nm (Fig. 4). Violet sensitive cells were found only in the anterior quadrant of the eye.

     
  3. 3.

    For 29 cells spectral sensitivity curves were plotted from the spectral efficiency curves using response-energy functions determined at λmax or spectral efficiency curves taken at two or more stimulus energy levels (Figs. 5B, 6B, 7). When the sensitivity curves are normalized the vertical and horizontal e-vector responses are closely similar indicating that dichroism of the visual pigment is undoubtedly responsible for the observed differential sensitivity (Figs. 5C, 6C).

     
  4. 4.

    For 51 yellow-orange cells where e-vector comparisons can be made more than half (57%) were more responsive to vertical e-vector (Table 2) corresponding very closely with the estimated percentage of retinular cells with microvilli parallel to the body's dorso-ventral axis (57.2%). In contrast five of the seven violet cells available for this comparison gave stronger responses to horizontal e-vector suggesting they may predominantly be the one asymmetrical cell in each ommatidium. Nevertheless both color discriminating types were found to be present in both e-vector channels.

     
  5. 5.

    For the 29 cells for which spectral sensitivity curves can be plotted the average sensitivity ratio for the two polarization planes is 3.1 with a range from 1.2 to 11.9 at λmax. Since dichroic absorption ratios directly measured in crayfish have previously been shown to be about 2, the origin of greater spectral sensitivity ratios in individual retinular cells most likely must depend on other functions than photon absorption by a single rhabdomere.

     

Keywords

Polarization Plane Visual Pigment Sensitivity Curve Retinular Cell Sensitivity Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum, H., Kolb, G.: Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden. Z. vergl. Physiol. 60, 450–477 (1968).Google Scholar
  2. —, Zwehl, V. von: Die Sehzellen der Insekten als Analysatoren für polarisiertes Licht. Z. vergl. Physiol. 46, 1–7 (1962).Google Scholar
  3. —: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol. 48, 357–384 (1964).Google Scholar
  4. Bäuerlein, R.: Morphophysiologische Untersuchungen zum Sehvermögen von Potamon potamios rhodium Parisi (Decapoda, Potamonidae). Forma et Functio 1, 285–331 (1969).Google Scholar
  5. Bennett, R.: Spectral sensitivity studies on the whirligig beetle, Dineutes ciliatus. J. Insect Physiol. 13, 621–633 (1967).Google Scholar
  6. Bennett, R. R., Tunstall, J., Horridge, G. A.: Spectral sensitivity of single retinular cells of the locust. Z. vergl. Physiol. 55, 195–206 (1967).Google Scholar
  7. Bernhard, C. G. (ed.): The functional organization of the compound eye. pp. 591. Oxford: Pergamon Press 1966.Google Scholar
  8. Bernhards, H.: Der Bau des Komplexauges von Astacus fluviatilis (Potamobius astacns L.). Z. wiss Zool. 116, 649–707 (1916).Google Scholar
  9. Bruckmoser, P.: Die spektrale Empfindlichkeit einzelner Sehzellen des Rückenschwimmers Notonecta glauca L. (Heteroptera). Z. vergl. Physiol. 59, 187–204 (1968).Google Scholar
  10. Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol. 16, 86–109 (1962).Google Scholar
  11. —, Wendler, L.: Ein direkter Beweis für die Fähigkeit einzelner Sehzellen des Insektenauges, die Schwingungsrichtung polarisierten Lichtes zu analysieren. Z. vergl. Physiol. 43, 687–692 (1960).Google Scholar
  12. Dartnall, H. J. A.: The interpretation of spectral sensitivity curves. Brit. med. Bull. 9, 24–30 (1953).Google Scholar
  13. Eguchi, E.: Rhabdom structure and receptor potentials in single crayfish retinular cells. J. cell. comp. Physiol. 66, 411–429 (1965).Google Scholar
  14. —, Waterman, T. H.: Cellular basis for polarized light perception in the spider crab, Libinia. Z. Zellforsch. 84, 87–101 (1968).Google Scholar
  15. Fernández, H. R.: A survey of the visual pigments of decapod Crustacea of South Florida, 133 pp. Thesis, University of Miami, Coral Gables, Florida 1965.Google Scholar
  16. Genest, A.: An analysis of dark adaptation in two crustacean forms, Callinectes sapidus and Procambarus sp., 64 pp. Thesis, Yale University, New Haven, Connecticut 1961.Google Scholar
  17. Giulio, L.: Elektroretinographische Beweisführung dichroitischer Eigenschaften des Komplexauges bei Zweiflüglern. Z. vergl. Physiol. 46, 491–495 (1963).Google Scholar
  18. Glantz, R. M.: Light adaptation in the photoreceptor of the crayfish, Procambarus clarkii. Vision Res. 8, 1407–1421 (1968).Google Scholar
  19. Goldsmith, T. H.: The visual system of insects. In: The physiology of insecta, vol. I, (M. Rockstein, ed.), p. 397–462. New York: Academic Press 1964.Google Scholar
  20. —: Do flies have a red receptor? J. gen. Physiol. 49, 265–287 (1965).Google Scholar
  21. —: The natural history of invertebrate visual pigments. In: Handbook of sensory physiology, vol. VII. The photochemistry of vision (H. J. A. Dartnall, ed.). Berlin-Heidelberg-NewYork: Springer 1970 (in press).Google Scholar
  22. —, Fernández, H. R.: Comparative studies of crustacean spectral sensitivity. Z. vergl. Physiol. 60, 156–175 (1968).Google Scholar
  23. Hagins, W. A., Liebman, P. A.: The relationship between photochemical and electrical processes in living squid photoreceptors. Abstracts of Biophysical Society 7th Annual Meeting, New York, N.Y. ME 6. 1963.Google Scholar
  24. Harreveld, A. D. van: A physiological solution for freshwater crustaceans. Proc. Soc. exp. Biol. Med. (N.Y.) 34, 428–432 (1936).Google Scholar
  25. Hays, D., Goldsmith, T. H.: Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata. Z. vergl. Physiol. 65, 218–232 (1969).Google Scholar
  26. Horridge, G. A.: Perception of polarization plane, colour and movement in two dimensions by the crab, Carcinus. Z. vergl. Physiol. 55, 207–224 (1967).Google Scholar
  27. —: Unit studies on the retina of dragonflies. Z. vergl. Physiol. 62, 1–37 (1969).Google Scholar
  28. Kaneko, A., Hashimoto, H.: Recording site of the single cone response determined by an electrode marking technique. Vision Res. 7, 847–851 (1967).Google Scholar
  29. Kennedy, D., Bruno, M. S.: The spectral sensitivity of crayfish and lobster vision. J. gen. Physiol. 44, 1089–1102 (1961).Google Scholar
  30. —, Selverston, A. I., Remler, M. P.: Analysis of restricted neural networks. Science 164, 1488–1496 (1969).Google Scholar
  31. Kuwabara, M., Naka, K.: Response of a single retinula cell to polarized light. Nature (Lond.) 184, 455–456 (1959).Google Scholar
  32. Langer, H.: Nachweis dichroitischer Absorption des Sehfarbstoffes in den Rhabdomeren des Insektenauges. Z. vergl. Physiol. 51, 258–263 (1965).Google Scholar
  33. —: Grundlagen der Wahrnehmung von Wellenlänge und Schwingungsebene des Lichtes. Verh. dtsch. zool. Ges. Göttingen 30, 195–233 (1966).Google Scholar
  34. Langer, H., Thorell, B.: Microspectrophotometry of single rhabdomeres in the insect eye Exp. Cell Res. 41, 673–677 (1966a).Google Scholar
  35. —: Microspectrophotometric assay of visual pigments in single rhabdomeres of the insect eye. In: The functional organization of the compound eye (C. G. Bernhard, ed.), p. 145–150. Oxford: Pergamon Press 1966b.Google Scholar
  36. Liebmann, P. A.: In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161–178 (1962).Google Scholar
  37. Lüdtke, H.: Dunkeladaptation und Verschiebung der Helligkeitswerte im Auge von Notonecta glauca L. Z. Naturforsch. 9, 159–163 (1954).Google Scholar
  38. Mazokhin-Porshniakov, G. A.: Colorimetric study of color vision in the dragonfly. Biofizika 4, 427–436 [in Russian]. Biophysics 4, 46–57 (English translation) (1959).Google Scholar
  39. Moody, M. F.: Photoreceptor organelles in animals. Biol. Rev. 39, 43–86 (1964).Google Scholar
  40. Nosaki, H.: Electrophysiological study of color encoding in the compound eye of crayfish, Procambarus clarkii. Z. vergl. Physiol. 64, 318–323 (1969).Google Scholar
  41. Parker, G. H.: The retina and optic ganglia in decapods, especially Astacus. Mitteil. Zool. Station Neapel 12, 1–73 (1895).Google Scholar
  42. Ruck, P.: The components of the visual system of a dragonfly. J. gen. Physiol. 49, 289–307 (1965).Google Scholar
  43. Rutherford, D. J., Horridge, G. A.: The rhabdom of the lobster eye. Quart. J. micr. Sci. 106, 119–130 (1965).Google Scholar
  44. Schneider, L., Langer, H.: Die Struktur des Rhabdoms im „Doppelauge“ des Wasserläufers Gerris lacustris. Z. Zellforsch. 99, 538–559 (1969).Google Scholar
  45. Shaw, S. R.: Polarized light responses from crab retinula cells. Nature (Lond.) 211, 92–93 (1966).Google Scholar
  46. —: Simultaneous recordings from two cells in the locust retina. Z. vergl. Physiol. 55, 183–194 (1967).Google Scholar
  47. —: Organization of the locust retina. Symp. Zool. Soc. (Lond.) 23, 135–163 (1968).Google Scholar
  48. —: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vision Res. 9 (9), 999–1029 (1969a).Google Scholar
  49. —: Sense-cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res. 9 (9), 1031–1040 (1969b).Google Scholar
  50. Stieve, H.: Die spektrale Empfindlichkeitskurve des Auges von Eupagurus bernhardus L. Z. vergl. Physiol. 43, 518–525 (1960).Google Scholar
  51. Tomita, T., Kaneko, A., Murakami, M., Pautler, E. L.: Spectral response curves of single cones in the carp. Vision Res. 7, 519–531 (1967).Google Scholar
  52. Wald, G.: Single and multiple visual systems in arthropods. J. gen. Physiol. 51, 125–156 (1968).Google Scholar
  53. —, Brown, P. K., Gibbons, I. R.: Visual excitation: a chemoanatomical study. Symp. Soc. exp. Biol. 16, 32–57 (1962).Google Scholar
  54. —, Seldin, E. B.: Spectral sensitivity of the common prawn Palaemonetes vulgaris. J. gen. Physiol. 51, 694–700 (1968).Google Scholar
  55. Waterman, T. H.: Light sensitivity and vision. In: The physiology of Crustacea, vol. II (T. H. Waterman, ed.), p. 1–64. New York: Academic Press 1961.Google Scholar
  56. —: Information channeling in the crustacean retina. In: Proc. of the Symp. on Information Processing in Sight Sensory Systems, (P. W. Nye, ed.), p. 48–56. Pasadena: National Institutes of Health and the California Institute of Technology 1966.Google Scholar
  57. Waterman, T. H.: Systems theory and biology — view of a biologist. In: Systems theory and biology (M. D. Mesarović, ed.), p. 1–37. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  58. —, Fernández, H. R., Goldsmith, T. H.: Dichroism of photosensitive pigments in rhabdoms of the crayfish Orconectes. J. gen. Physiol. 54, 415–432 (1969).Google Scholar
  59. —, Horch, K. W.: Mechanism of polarized light perception. Science 154, 467–475 (1966).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Talbot H. Waterman
    • 1
  • Hector R. Fernández
    • 1
  1. 1.Department of BiologyYale UniversityNew HavenUSA

Personalised recommendations