Archives of Toxicology

, Volume 41, Issue 4, pp 249–277

Mutagenic and alkylating metabolites of halo-ethylenes, chlorobutadienes and dichlorobutenes produced by rodent or human liver tissues

Evidence for oxirane formation by P450-linked microsomal mono-oxygenases
  • Helmut Bartsch
  • Christian Malaveille
  • Alain Barbin
  • Ghyslaine Planche
Original Investigations

Abstract

Mutagenicity, expressed as the number of his+ revenants per μmole of test compound per hour of exposure, was estimated in two strains of S. typhimurium in the presence of a postmitochondrial mouse-liver supernatant, following exposure to vapours of one of a series of halo-olefins. Their activity was in the following descending order: 3,4-dichlorobutene-1 > 1-chlorobutadiene (technical grade) > 2-chlorobutadiene > vinyl bromide > vinylidene chloride > vinyl chloride; marginal mutagenicity was detected in the presence of 1,1,2-trichloroethylene and 1,1-difluoroethylene, and none with tetrachloroethylene and vinyl acetate. Liver fractions from humans converted vinyl chloride, vinyl bromide, vinylidene chloride and 2-chlorobutadiene into mutagens. In the plate incorporation assay, 1,4-dichlorobutene-2 was mutagenic per se, and addition of microsomal fractions from human or mouse liver enhanced the mutagenicity; a synthetic putative metabolite, 1,4-dichloro-2,3-epoxybutane was less mutagenic than the parent olefin in strain TA100. Treatment of rats with phenobarbital or 3-methylcholanthrene caused an up to 2-fold increase in the liver microsome-mediated mutagenicities of vinyl chloride and vinylidene chloride in S. typhimurium TA1530; while treatment with pregnenolone-16α-carbonitrile, aminoacetonitrile or disulfiram decreased the mutagenic effects. Vinyl chloride, and probably vinyl bromide, were shown to be epoxidized by mouse-liver microsomes; volatile alkylating metabolites were trapped by reaction with excess 4-(4-nitrobenzyl)pyridine and analysed spectrally. 2-Chlorobutadiene also yielded an alkylating intermediate, but 1,1-difluoroethylene, 1,1-dichloroethyleneand 1,1,2-trichloroethylene did not. 2-Chloro- and 1-chlorobutadiene, 3,4-dichlorobutene-1, 1,4-dichlorobutene-2 and its 2,3-epoxy derivative showed alkylating activity with 4-(4-nitrobenzyl)pyridine, which was not related quantitatively to mutagenic activity in S. typhimurium TA100 in the absence of a metabolic activation system. These data support the hypothesis that an oxidation of the double bond in certain halo-olefins, which is dependent on microsomal mono-oxygenases is a common pathway in the formation of biologically reactive intermediates. The relevance of the metabolites formed during such oxidative processes to the mutagenic, toxic and carcinogenic activities in vivo of some of the parent compounds is discussed.

Key words

Halo-olefins Oxirane formation Mutagenicity Alkylating activity 

Abbreviations

VC

Vinyl chloride

VDC

Vinylidene chloride

CBD

2-Chloro-1,3-butadiene

PB

Phenobarbital

S-9

9000 × g tissue supernatant

NBP

4-(4-Nitrobenzyl)pyridine

G 6-P

Glucose 6-phosphate

NADP+

Nicotinamide adenine dinucleotide phosphate

Zusammenfassung

Die mutagene Wirkung einer Reihe halogenierter Kohlenwasserstoffe wurde in Gegenwart einer postmitochondrialen Mäuseleberfraktion in zwei Stämmen von S. typhimurium gemessen. Wenn die Bakterien den gasförmigen Testsubstanzen ausgesetzt wurden, war die Mutagenität in folgender Reihenfolge: 3,4-Dichlorbuten-1 > 1-Chlorbutadien (technischer Reinheitsgrad) > 2-Chlorbutadien > Vinylbromid > Vinylidenchlorid > Vinylchlorid. 1,1,2-Trichloräthylen und 1,1-Difluoräthylen zeigten schwachen, Tetrachloräthylen und Vinylacetat keinen mutagenen Effekt. Gewebefraktionen von Menschenleber konnten Vinylchlorid, Vinylbromid, Vinylidenchlorid und 2-Chlorbutadien in mutagene Metabolite überführen. Im konventionellen Plattentest zeigte 1,4-Dichlorbuten-1 eine direkte mutagene Wirkung, die durch Zusatz von mikrosomalen Leberfraktionen von Menschen oder von der Maus erhöht wurde. Der vermutete reaktive Metabolit 1,4-Dichlor-2,3-Epoxybutan wurde synthetisiert, erwies sich aber im Stamm TA100 als ein schwächeres Mutagen als die Muttersubstanz. Die Vorbehandlung von Ratten mit Phenobarbital oder 3-Methylcholanthren verdoppelte die mikrosomenabhängige Mutagenität von Vinylchlorid und Vinylidenchlorid in S. typhimurium TA1530, Pregnenolon-16α-Carbonitril, Aminoacetonitril oder Disulfiram dagegen verminderten die mutagene Wirkung. Eine Epoxidierung von Vinylchlorid und wahrscheinlich Vinylbromid durch Mäuselebermikrosomen wurde durch die Bildung und Abfangen von flüchtigen, alkylierenden Metaboliten mit 4-(4-Nitrobenzyl)pyridin sowie spektralen Untersuchungen nachgewiesen; 2-Chlorbutadien bildete ebenfalls eine alkylierende Zwischenstufe, die in ähnlichen Experimenten mit 1,1-Difluoräthylen, 1,1-Dichloräthylen und 1,1,2-Trichloräthylen nicht nachgewiesen werden konnte. 2-Chlor- und 1-Chlorbutadien, 3,4-Dichlorbuten-1,1,4-Dichlorbuten-2 und sein 2,3-Epoxid zeigten alkylierende Wirkung in Gegenwart von 4-(4-Nitrobenzyl)pyridin, die sich quantitativ nicht mit der mutagenen Aktivität in S. typhimurium TA100 in Abwesenheit metabolischer Aktivierung korrelieren ließ. Die Ergebnisse zeigen einen gemeinsamen Bildungsweg in halogenierten Olefinen auf, der über eine mikrosomale Oxidation der Doppelbindung zu biologisch reaktiven Zwischenstufen führt. Die Bedeutung derartig gebildeter Metabolite für die mutagene, toxische und karzinogene Wirkung der Muttersubstanzen in vivo wird zusammenfassend erörtert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, B. N., McCann, J., Yamasaki, E.: Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31, 347–364 (1975)Google Scholar
  2. Andersen, M. E., Jones, R. A., Jenkins, L. L.: Enhancement of 1,1-dichloroethylene toxicity by pretreatment of fasted male rats with 2,3-epoxypropan-1-ol. Drug Chem. Toxicol. 1, 63–74 (1977–1978)Google Scholar
  3. Barbin, A., Brésil, H., Croisy, A., Jacquignon, P., Malaveille, C., Montesano, R., Bartsch, H.: Liver microsome-mediated formation of alkylating agents from vinyl bromide and vinyl chloride. Biochem. Biophys. Res. Commun. 67, 596–603 (1975)Google Scholar
  4. Barbin, A., Planche, G., Croisy, A., Malaveille, C., Bartsch, H.: Detection of electrophilic metabolites of halogenated olefins with 4-(4-nitrobenzyl)pyridine (NBP) or with Salmonella typhimurium. In: Second International Conference on Environmental Mutagens, Abstract, p. 59. Edinburgh, 1977Google Scholar
  5. Bartsch, H., Loprieno, N.: Vinyl chloride (VCM): An example for evaluating adverse biological effects in short-term tests. In: Proc. of the 6th EEMS-meeting, Gernrode, GDR, pp. 161–165. Berlin: Akademie-Verlag 1977Google Scholar
  6. Bartsch, H., Montesano, R.: Mutagenic and carcinogenic effects of vinyl chloride. Mutat. Res. 32, 93–114 (1975)Google Scholar
  7. Bartsch, H., Malaveille, C., Montesano, R.: Human, rat and mouse liver-mediated mutagenicity of vinyl chloride in S. typhimurium strains. Int. J. Cancer 15, 429–437 (1975a)Google Scholar
  8. Bartsch, H., Malaveille, C., Montesano, R., Tomatis, L.: Tissue-mediated mutagenicity of vinylidene chloride and 2-chlorobutadiene in Salmonella typhimurium. Nature 255, 641–643 (1975b)Google Scholar
  9. Bartsch, H., Malaveille, C., Barbin, A., Planche, G., Montesano, R.: Alkylating and mutagenic metabolites of halogenated olefins produced by human and animal tissues. Proc. Amer. Ass. Cancer Res. 17, 17 (1976a)Google Scholar
  10. Bartsch, H., Malaveille, C., Barbin, A., Brésil, H., Tomatis, L., Montesano, R.: Mutagenicity and metabolism of vinyl chloride and related compounds. Environ. Health Perspect. 17, 193–198 (1976b)Google Scholar
  11. Bolanowska, W., Golacka, J.: Inhalation and excretion of tetrachloroethylene in men in experimental conditions. Med. Pracy 23, 109–119 (1972)Google Scholar
  12. Bolt, H. M.: Metabolic activation of halogenated ethylenes. In: Primary liver tumors. Remmer, Bolt, Bannasch and Popper (eds.), pp. 285–294. Lancaster UK: MTP Press 1978Google Scholar
  13. Bolt, H. M., Kappus, H., Buchter, A., Bolt, W.: Disposition of 1,2-14C-vinyl chloride in the rat. Arch. Toxicol. (Berl.) 35, 153–162 (1976)Google Scholar
  14. Bonse, G., Urban, T., Reichert, D., Henschler, D.: Chemical reactivity, metabolic oxirane formation and biological reactivity of chlorinated ethylenes in the isolated perfused rat liver preparation. Biochem. Pharmacol. 24, 1829–1834 (1975)Google Scholar
  15. Bronzetti, G., Zeiger, E., Frezza, D.: Genetic activity of trichloroethylene in yeast. J. Environ. Path. Toxicol. 1, 411–418 (1978)Google Scholar
  16. Carlson, G. P.: Enhancement of the hepatotoxicity of trichloroethylene by inducers of drug metabolism. Res. Commun. Chem. Pathol. Pharmacol. 7, 637–640 (1974)Google Scholar
  17. Carlson, G. P., Fuller, G. C.: Interaction of modifiers of hepatic microsomal drug metabolism and the inhalation toxicity of 1,1-dichloroethylene. Res. Commun. Chem. Pathol. Pharmacol. 4, 553–560 (1972)Google Scholar
  18. Conolly, R. B., Jaeger, R. J., Szabo, S.: Acute hepatotoxicity of ethylene, vinyl fluoride, vinyl chloride and vinyl bromide after Aroclor 1254 pretreatment. Toxicol. Appl. Pharmacol. 41, 146 (1977)Google Scholar
  19. Creech, J. L., Johnson, M. N.: Angiosarcoma of the liver in the manufacture of polyvinyl chloride. J. Occup. Med. 16, 150–151 (1974)Google Scholar
  20. Drevon, C., Kuroki, T., Montesano, R.: Microsome-mediated mutagenesis of a Chinese hamster cell line by various chemicals. In: Progress in genetic toxicology. Scott, D., Bridges, B. A., Sobels, F. H. (eds.), pp. 207–213. Amsterdam: Elsevier/North Holland Biomedical Press 1977Google Scholar
  21. Fishbein, L.: Industrial mutagens and potential mutagens. I. Halogenated aliphatic derivatives. Mutat. Res. 32, 267–308 (1976)Google Scholar
  22. Garro, A. H., Guttenplan, J. B., Milvy, P.: Vinyl chloride dependent mutagenesis: effects of liver extracts and free radicals. Mutat. Res. 38, 81–88 (1976)Google Scholar
  23. Göthe, R., Callermann, C. J., Ehrenberg, L., Wachtmeister, C. A.: Trapping with 3,4-dichlorobenzenethiol of reactive metabolites formed in vitro from the carcinogen vinyl chloride. Ambio 3, 234–236 (1974)Google Scholar
  24. Green, T., Hathway, D. E.: The chemistry and biogenesis of the S-containing metabolites of vinyl chloride in rats. Chem.-Biol. Interact. 17, 137–150 (1977)Google Scholar
  25. Green, T., Hathway, D. E.: Interactions of vinyl chloride with rat liver DNA in vivo. Chem.-Biol. Interact. 22, 211–224 (1978)Google Scholar
  26. Greim, H., Bonse, G., Radwan, Z., Reichert, D., Henschler, D.: Mutagenicity in vitro and potential carcinogenicity of chlorinated ethylenes as a function of metabolic oxirane formation. Biochem. Pharmacol. 24, 2013–2017 (1975)Google Scholar
  27. Hadjiolov, D., Mundt, D.: Effect of aminoacetonitrile on the metabolism of dimethylnitrosamine and methylation of RNA during liver carcinogenesis. J. Natl. Cancer Inst. 52, 753–756 (1974)Google Scholar
  28. Henschler, D.: Metabolism of chlorinated alkenes and alkanes as related to toxicity. J. Environ. Pathol. Toxicol. 1, 125–133 (1977)Google Scholar
  29. Henschler, D., Eder, E., Neudecker, T., Metzler, M.: Carcinogenicity of trichloroethylene: Fact or artifact? Arch. Toxicol. (Berl.) 37, 233–236 (1977)Google Scholar
  30. Huberman, E., Bartsch, H., Sachs, L.: Mutation induction in Chinese hamster cells by two vinyl chloride metabolites, chloroethylene oxide and 2-chloroacetaldehyde. Int. J. Cancer 16, 639–644 (1975)Google Scholar
  31. Hussain, S., Ostermann-Golkar, S.: Comment on the mutagenic effectiveness of vinyl chloride metabolites. Chem.-Biol. Interact. 12, 265–267 (1976)Google Scholar
  32. Infante, P. F., Wagoner, J. K., Young, R. J.: Chloroprene: Observations of carcinogenesis and mutagenesis. In: Origins of human cancer. Hiatt, H. H., Watson, J. D., Winsten, J. A. (eds.), Book A, pp. 205–217. Cold Spring Harbor Laboratory, 1977Google Scholar
  33. International Agency for Research on Cancer: IARC monographs on the evaluation of the carcinogenic risk of chemicals to man, vol. 11. Cadmium, nickel, some epoxides, miscellaneous industrial chemicals and general considerations on volatile anaesthetics. Lyon, 1976Google Scholar
  34. International Agency for Research on Cancer: IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol. 19. Some plastics and synthetic elastomers — monomers, homopolymers and copolymers. Lyon (In press, 1978/1979)Google Scholar
  35. Ivanetich, K. M., Aronson, E., Katz, E. D.: The interaction of vinyl chloride with rat hepatic microsomal cytochrome P-450 in vitro. Biochem. Biophys. Res. Commun. 74, 1411–1418 (1977)Google Scholar
  36. Jaeger, R. J., Conolly, R. B., Reynolds, E. S., Murphy, S. D.: Biochemical toxicology of unsaturated halogenated monomers. Environ. Health Perspect 11, 121–128 (1975)Google Scholar
  37. Jaeger, R. J., Murphy, S. D., Reynolds, E. S., Szabo, S., Moslen, M. T.: Chemical modification of acute hepatotoxicity of vinyl chloride monomer in rats. Toxicol. Appl. Pharmacol. 41, 597–607 (1977)Google Scholar
  38. Johnson, M. K.: Metabolism of chloroethanol in rat. Biochem. Pharmacol. 16, 185–199 (1967)Google Scholar
  39. Jones, B. K., Hathway, D. E.: The biological fate of vinylidene chloride in rats. Chem.-Biol. Interact. 20, 27–41 (1978)Google Scholar
  40. Kappus, H., Bolt, H. M., Buchter, A., Bolt, W.: Rat liver microsomes catalyse covalent binding of 14C-vinyl chloride to macromolecules. Nature 257, 134–135 (1975)Google Scholar
  41. Kappus, J., Bolt, H. M., Buchter, A., Bolt, W.: Liver microsomal uptake of [14C]vinyl chloride and transformation to protein alkylating metabolites in vitro. Toxicol. Appl. Pharmacol. 37, 461–471 (1976)Google Scholar
  42. Laib, R. J., Bolt, H. M.: Alkylation of RNA by vinyl chloride metabolites in vivo: formation of 1,N 6-etheno-adenosine. Toxicology 8, 185–195 (1977)Google Scholar
  43. Laib, R. J., Bolt, H. M.: Formation of 3,N 4-ethenocytidine moieties in RNA by vinyl chloride metabolites in vitro and in vivo. Arch. Toxicol. (Berl.) 39, 235–240 (1978)Google Scholar
  44. Loprieno, N., Barale, R., Baroncelli, S., Bauer, C., Bronzetti, G., Camellini, A., Cercignani, G., Corsi, C., Gervasi, G., Leporini, C., Nieri, R., Rossi, A., Stretti, G., Turchi, G.: Evaluation of the genetic effects induced by vinyl chloride monomer (VCM) under mammalian metabolic activation: studies in vitro and in vivo. Mutat. Res. 40, 85–96 (1976)Google Scholar
  45. Loprieno, N., Barale, R., Baroncelli, S., Bartsch, H., Bronzetti, G., Cammellini, A., Corsi, C., Frezza, D., Nieri, R., Leporini, C., Rosellini, D., Rossi, A. M.: Induction of gene mutations and gene conversions by vinyl chloride metabolites in yeast Cancer Res. 36, 253–257 (1977)Google Scholar
  46. Malaveille, C., Bartsch, H., Barbin, A., Camus, A.-M., Montesano, R., Croisy, A., Jacquignon, P.: Mutagenicity of vinyl chloride, chloroethylene oxide, chloroacetaldehyde and chloroethanol. Biochem. Biophys. Res. Commun. 63, 363–370 (1975)Google Scholar
  47. Malaveille, C., Planche, G., Bartsch, H.: Factors for efficiency of the Salmonella microsome mutagenicity assay. Chem.-Biol. Interact. 17, 129–136 (1977)Google Scholar
  48. Maltoni, C., Lefemine, G.: Carcinogenicity bioassays of vinyl chloride: Current results. Ann. N.Y. Acad. Sci. 246, 195–218 (1975)Google Scholar
  49. McCann, J., Simmon, V., Streitwieser, D., Ames, B. N.: Mutagenicity of chloroacetaldehyde, a possible metabolic product of 1,2-dichloroethane (ethylene dichloride), chloroethanol (ethylene chlorohydrin), vinyl chloride and cyclophosphamide. Proc. Natl. Acad. Sci. USA 72, 3190–3193 (1975)Google Scholar
  50. Meester, C. de, Poncelet, F., Roberfroid, D., Mercier, M.: Mutagenicity of butadiene and butadiene monoxide. Biochem. Biophys. Res. Commun. 86, 298–305 (1978)Google Scholar
  51. Montesano, R., Bartsch, H.: Carcinogenic and mutagenic properties of nitrosamines and nitrosamides. Mutat Res. 32, 179–228 (1975)Google Scholar
  52. Moslen, M. T., Reynolds, E. S., Szabo, S.: Enhancement of the metabolism and hepatotoxicity of trichloroethylene and perchloroethylene. Biochem. Pharmacol. 26, 369–375 (1977)Google Scholar
  53. Muenzer, M., Heder, K.: Results of industrial-medical and technical examination of chemical purification operations. Zentralbl. Arbeitsmed. Arbeitsschutz Prophyl. 22, 133–138 (1972)Google Scholar
  54. National Cancer Institute: Bioassay of tetrachloroethylene for possible carcinogenicity. DHEW Publication No. (NIH) 77-813, Carcinogenesis Technical Report Series No. 13 (1977)Google Scholar
  55. Nyström, A. E.: Health hazards in the chloroprene rubber industry and their prevention. A clinical and experimental study with special reference to chloroprene and its oxidation and polymerization products. Acta Med. Scand. 132 (Suppl. 219), 1–125 (1948)Google Scholar
  56. Ostermann-Golkar, S., Hultmark, D., Segerbäck, D., Calleman, C. J., Göthe, R., Ehrenberg, L., Wachtmeister, C. A.: Alkylation of DNA and proteins in mice exposed to vinyl chloride. Biochem. Biophys. Res. Commun. 76, 259–266 (1977)Google Scholar
  57. Powell, J. F.: Trichloroethylene: absorption, elimination and metabolism. Br. J. Ind. Med. 2, 142–145 (1945)Google Scholar
  58. Rannug, U., Johansson, A., Ramel, C., Wachtmeister, C. A.: Mutagenicity of vinyl chloride after metabolic activation. Ambio 3, 194–197 (1974)Google Scholar
  59. Rannug, U., Göthe, R., Wachtmeister, C. A.: The mutagenicity of chloroethylene oxide, chloroacetaldehyde, 2-chloroethanol and chloroacetic acid, conceivable metabolites of vinyl chloride. Chem.Biol. Interact. 12, 251–263 (1976)Google Scholar
  60. Reynolds, E. S., Moslen, M. T., Szabo, S., Jaeger, R. J., Murphy, S. D.: Hepatotoxicity of vinyl chloride and 1,1-dichloroethylene. Am. J. Pathol. 81, 219–236 (1975a)Google Scholar
  61. Reynolds, E. S., Moslen, M. T., Szabo, S., Jaeger, R. J.: Vinyl chloride-induced deactivation of cytochrome P-450 and other components of the liver mixed function oxidase system: an in vivo study. Res. Commun. Chem. Pathol. Pharmacol. 12, 685–594 (1975b)Google Scholar
  62. Sabadie, N., Malaveille, C., Camus, A. M., Brun, G., Bartsch, H.: Vinyl chloride, N-nitrosomorpholine, and N-nitroso-N′-methylpiperazine mutagenicity associated with benzo(a)pyrene-hydroxylase activity in human and rat liver in vitro, Abstract. XIIth Int. Cancer Congress, Buenos Aires, 1978Google Scholar
  63. Schmähl, D., Krüger, F. W., Habs, M., Diehl, B. P.: Influence of disulfiram on the organotropy of the carcinogenic effect of dimethylnitrosamine and diethylnitrosamine in rats. Z. Krebsforsch. 85, 271–276 (1976)Google Scholar
  64. Semmelhack, M. F., Foos, J. S., Katz, S.: Spiro-[4.4]-nonatetraene and spiro-[4.4]-nona-[1,3,7]-triene-synthesis and properties. Effects of spiroconjugation. J. Am. Chem. Soc. 95, 7325–7336 (1973)Google Scholar
  65. Shahin, M. M.: The non-mutagenicity and recombinogenicity of vinyl chloride in the absence of metabolic activation. Mutat. Res. 40, 269–272 (1976)Google Scholar
  66. Shahin, M. M., Von Borstel, R. C.: Mutagenic and lethal effects of α-benzene hexachloride, dibutylphthalate, and trichloroethylene in Saccharomyces cerevisiae. Mutat. Res. 48, 173–180 (1977)Google Scholar
  67. Short, R. D., Winston, J. M., Minor, J. L., Seifter, J., Lee, C.-C.: Effect of various treatments on toxicity of inhaled vinylidene chloride. Environ. Health Perspect. 21, 125–129 (1977)Google Scholar
  68. Simmon, V. F., Kauhanen, K., Tardiff, R. G.: Mutagenic activity of chemicals identified in drinking water. In: Progress in genetic toxicology. Scott, D., Bridges, B. A., Sobels, F. H. (eds.), pp. 249–258. Amsterdam: Elsevier/North Holland Biomedical Press 1977Google Scholar
  69. Strömme, H. J.: Metabolism of disulfiram and diethyldithiocarbamate in rats with demonstration of an in vivo ethanol-induced inhibition of the glucuronic acid conjugation of the thiol. Biochem. Pharmacol. 14, 393–410 (1965)Google Scholar
  70. Uehleke, H., Poplawski-Tabarelli, S.: Irreversible binding of 14C-labelled trichloroethylene to mice liver constituents in vivo and in vitro. Arch. Toxicol. (Berl.) 37, 289–294 (1977)Google Scholar
  71. Uehleke, H., Tabarelli-Poplawski, S., Bonse, G., Henschler, D.: Spectral evidence for 2,2,3-trichlorooxirane formation during microsomal trichloro-ethylene oxidation. Archiv. Toxicol. (Berl.) 37, 95–105 (1977)Google Scholar
  72. Van Duuren, B. L.: On the possible mechanism of carcinogenic action of vinyl chloride. Ann. N.Y. Acad. Sci. 246, 258–267 (1975)Google Scholar
  73. Van Duuren, B. L., Banerjee, S.: Covalent interaction of metabolites of the carcinogen trichloroethylene in rat hepatic microsomes. Cancer Res. 36, 2419–2422 (1976)Google Scholar
  74. Van Duuren, B. L., Goldschmidt, B. M., Seidman, I.: Carcinogenic activity of di-and trifunctional α-chloro ethers and of 1,4-dichlorobutene-2 in ICR/HA Swiss mice. Cancer Res. 35, 2553–2557 (1975)Google Scholar
  75. Van Duuren, B. L., Katz, C., Goldschmidt, M., Freubel, K., Slvak, A.: Carcinogenicity of halo-ethers. II. Structure activity relationship of analogs of bis(chloromethyl)ether. J. Natl. Cancer Inst. 48, 1431–1439 (1972)Google Scholar
  76. Vogel, E.: Mutagenicity of carcinogens in Drosophila as a function of genotype-controlled metabolism. In: In vitro metabolic activation in mutagenesis testing, de Serres, F. J., Fouts, J. R., Bend, J. R., Philpot, R. M. (eds.), pp. 62–79. Amsterdam: Elsevier/North Holland Biomedical Press 1976Google Scholar
  77. Watanabe, P. G., Hefner, R. E., Gehring, P. J.: Vinyl chloride-induced depression of hepatic nonprotein sulfhydryl content and effects on bromosulphthalein (BSP) clearance in rats. Toxicology 6, 1–8 (1976)Google Scholar
  78. Zemaitis, M. A., Greene, F. E.: Impairment of hepatic microsomal drug metabolism in the rat during daily disulfiram administration. Biochem. Pharmacol. 25, 1355–1360 (1976)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Helmut Bartsch
    • 1
  • Christian Malaveille
    • 1
  • Alain Barbin
    • 1
  • Ghyslaine Planche
    • 1
  1. 1.International Agency for Research on CancerLyon Cedex 2France

Personalised recommendations