Advertisement

Applied Microbiology and Biotechnology

, Volume 30, Issue 4, pp 375–380 | Cite as

DNA mediated transformation of the filamentous fungus Curvularia lunata using a dominant selectable marker

  • H. D. Osiewacz
  • A. Weber
Applied Genetics and Regulation

Summary

A DNA mediated transformation system was developed for the filamentous fungus Curvularia lunata. Incubation of protoplasts with a plasmid (pAN7-1) which contains the Escherichia coli hygromycin B phosphotransferase gene (hph) fused to an Aspergillus nidulans promoter resulted in the formation of hygromycin B resistant transformants. DNA-DNA hybridization experiments revealed that plasmid pAN7-1 became integrated into the fungal genome. All transformants analyzed so far proved to be stable even after vegetative growth for three months without selective pressure.

Keywords

Escherichia Coli Aspergillus Selective Pressure Vegetative Growth Hygromycin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akins RA, Lambowitz AM (1985) General method for cloning Neurospora crassa nuclear genes by complementation. Mol Cell Biol 5:2272–2278Google Scholar
  2. Akins RA, Lambowitz AM (1987) A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell 50:331–345Google Scholar
  3. Crueger UE, Crueger E (1982) Lehrbuch der angewandten Mikrobiologie. Akademische Verlagsgesellschaft, WiesbadenGoogle Scholar
  4. Cooley RN, Shaw RK, Franklin FCH, Caten CA (1988) Transformation of the phytopathogenic fungus Septoria nodorum to hygromycin B resistance. Curr Genet 13:383–389Google Scholar
  5. Esser K (1977) Concerted breeding in fungi and its biotechnological application. Endeavour, New Series 1:143–148Google Scholar
  6. Esser K (1985) Potentials and prospects of genetics in biotechnology. In: Proc Third Europ Congress on Biotechnology, München 1984. Dechema, Weinheim, Vol 4, pp 241–256Google Scholar
  7. Esser K, Mohr G (1986) Integrative transformation of filamentous fungi with respect to biotechnological application. Proc Biochem 21:153–159Google Scholar
  8. Farman ML, Oliver RP (1988) The transformation of protoplasts of Leptosphaeria maculans to hygromycin B resistance. Curr Genet 13:327–330Google Scholar
  9. Hynes MJ (1986) Transformation of filamentous fungi. Exp Mycol 10:1–8Google Scholar
  10. Ilczuk Z (1971) Genetics of citric acid producing strains of Aspergillus niger IV. Citric acid synthesis by heterozygous diploids of Aspergillus niger. Nahrung, Chemestry, Biochemistry, Microbiology and Technology 15:381–388Google Scholar
  11. Kistler HC, Benny UK (1988) Genetic transformation of the fungal plant wilt pathogen, Fusarium oxysporum. Curr Genet 13:145–149Google Scholar
  12. Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Esser K (1985) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 9:373–382Google Scholar
  13. Lodder J (1970) The yeasts. North-Holland Publishing Company, AmsterdamGoogle Scholar
  14. Maniatis T, Fritsch EF, Sambroek J (1982) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  15. Mullaney EJ, Punt PJ, van den Hondel CAMJJ (1988) DNA mediated transformation of Aspergillus ficuum. Appl Microbiol Biotechnol 28:451–454Google Scholar
  16. Oliver RP, Roberts IN, Harling R, Kenyon L, Punt PJ, Dingemanse MA, van den Hondel CAMJJ (1987) Transformation of Fulvia fulva, a fungal pathogen of tomato, to hygromycin B resistance. Curr Genet 12:231–233Google Scholar
  17. Pathak SG, Elander RP (1971) Biochemical properties of haploid and diploid strains of Pencillium chrysogenum. Appl Microbiol 22:366–371Google Scholar
  18. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124Google Scholar
  19. Rodriguez RJ, Yoder OC (1987) Selectable genes for transformation of the fungal plant pathogen Glomerella cingulata f. sp. phaseoli (Colletotrichum lindemuthianum). Gene 54:73–81Google Scholar
  20. Sermonti G (1959) Genetics of penicillin production. Ann NY Acad Sci 81:950–973Google Scholar
  21. Turgeon BG, Garber RC, Yoder OC (1985) Transformation of the fungal maize pathogen Cochliobolus heterostrophus using the Aspergillus nigulans amdS gene. Mol Gen Genet 201:450–453Google Scholar
  22. Turgeon BG, Garber RC, Yoder OC (1987) Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol 7:3297–3305Google Scholar
  23. van Hartingsveldt W, Mattern IE, van Zeijl CMJ, Pouwels PH, van den Hondel CAMJJ (1987) Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gene Genet 206:71–75Google Scholar
  24. Vollmer SV, Yanofsky C (1986) Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci 83:4869–4873Google Scholar
  25. Yanisch-Perron C, Viera J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • H. D. Osiewacz
    • 1
  • A. Weber
    • 2
  1. 1.Lehrstuhl für Allgemeine BotanikRuhr-UniversitätBochumFederal Republic of Germany
  2. 2.Schering AGMikrobiologische EntwicklungBerlin-Charlottenburg

Personalised recommendations