Advertisement

Polymer Bulletin

, Volume 30, Issue 5, pp 567–574 | Cite as

A nanoscopic view at the spherulitic morphology of isotactic polypropylene by atomic force microscopy

  • Holger Schönherr
  • Daniel Snétivy
  • G. Julius Vansco
Article

Summary

The spherulitic morphology of isotactic polypropylene (i-PP) was investigated by a combination of optical and atomic force microscopes. Thin films of i-PP were prepared in situ by using a hot stage. The crystallization conditions were carefully selected to produce different types of spherulites including α-I, α-II, mixed, and β-III types. Atomic force microscopy (AFM) scans unveiled morphological details such as mother/daughter lamellae, cross-hatching, and thickness and orientation of the lamellae. In a few cases, macromolecules were visualized. However, due to poor resolution, only the expected chain direction within the lamellae could be determined. The advantages and disadvantages of using AFM to study the surface of spherulites is discussed.

Keywords

Polymer Microscopy Crystallization Thin Film Atomic Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Natta G, Corradini P, Cesari M (1956) Rend.Atti Acc. Naz.Lincei 21: 365Google Scholar
  2. 2.
    Keith HD, Padden FJ, Walter NH, Wyckoff HW (1959) Appl Phys 30:1485Google Scholar
  3. 3.
    Turner-Jones A, Aizlewood JM, Beckett DR (1964) Makromol Chem 75:134Google Scholar
  4. 4.
    Khoury F (1966) J Res Natl Bureau Std 70A: 29Google Scholar
  5. 5.
    Padden FJ, Keith HD (1966) J Appl Phys 37: 4013Google Scholar
  6. 6.
    Lotz B, Wittmann JC (1986) Polym Sci, Part B: Polym Phys 24: 1541Google Scholar
  7. 7.
    Padden FJ, Keith HD (1959) J Appl Phy 30: 1479Google Scholar
  8. 8.
    Norton DR, Keller A (1985) Polymer 26: 704Google Scholar
  9. 9.
    Varga J (1992) J Mat Sci 27:2557Google Scholar
  10. 10.
    Awaya H (1988) Polymer 29:591Google Scholar
  11. 11.
    Bassett DC, Olley RH (1984) Polymer 25: 935Google Scholar
  12. 12.
    Olley RH, Bassett DC (1989) Polymer 30: 399Google Scholar
  13. 13.
    Sarid D (1991) Scanning Force Microscopy, with Applications to Electric, Magnetic and Atomic Forces. Oxford University Press, OxfordGoogle Scholar
  14. 14.
    Snétivy D, Vancso GJ Polymer, submittedGoogle Scholar
  15. 15.
    Snétivy D, Guillet JE, Vancso GJ (1993) Polymer 34: 429Google Scholar
  16. 16.
    Lotz B, Wittmann JC, Stocker W, Magonow S, Cantow H-J (1991) Polymer Bulletin 26: 109Google Scholar
  17. 17.
    Binsbergen FL, De Lange BGM (1968) Polymer 9: 23Google Scholar
  18. 18.
    Keller A (1958) in: Growth and Perfection of Crystals (Doremus RH, Roberts BW, Turnbull D (eds)). Wiley, New York 499–532Google Scholar
  19. 19.
    Magonov S, Cantow H-J (1992) J Appl Polym Sci, Appl Polym Symp 51: 3Google Scholar
  20. 20.
    Wlochowicz A, Eder M (1984) Polymer 25: 1268Google Scholar
  21. 21.
    Ceres BV, Schultz JM (1984) J Appl Polym Sci 29: 4183Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Holger Schönherr
    • 1
  • Daniel Snétivy
    • 1
  • G. Julius Vansco
    • 1
  1. 1.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations