Advertisement

Current Microbiology

, Volume 30, Issue 3, pp 149–153 | Cite as

Detection of mip-like sequences and mip-related proteins within the family Rickettsiaceae

  • Nicholas P. Cianciotto
  • William O'Connell
  • Gregory A. Dasch
  • Louis P. Mallavia
Article

Abstract

The Mip surface protein, a prokaryotic analog of the FK506-binding proteins, enhances the ability of Legionella pneumophila to infect macrophages and protozoa. Using mip-specific probes and low-stringency Southern hybridizations, we have detected DNA sequences homologous to mip within Coxiella burnetii and Rochalimaea quintana. Using specific anti-Mip antisera and immunoblot analysis, we also detected Mip-related proteins within these bacteria as well as within Rickettsia and Ehrlichia species. These data suggest that Mip-related proteins have broad significance for host-parasite interactions. However, they also indicate that care must be exercised when using mip probes or anti-Mip antibodies for the detection of Legionella organisms in water or clinical samples.

Keywords

Clinical Sample Surface Protein Immunoblot Analysis Southern Hybridization Broad Significance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Ausubel FM, Brent RB, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1987) Current protocols in molecular biology. New York: John Wiley and SonsGoogle Scholar
  2. 2.
    Bangsborg JM, Cianciotto NP, Hindersson P (1991) Nucleotide sequence analysis of the Legionella micdadei mip gene, encoding a 30-kilodalton analog of the Legionella pneumophila Mip protein. Infect Immun 59:3836–3840Google Scholar
  3. 3.
    Bej AK, Mahbubani MH, Atlas RM (1991) Detection of viable Legionella pneumophila in water by polymerase chain reaction and gene probe methods. Appl Environ Microbiol 57:597–600Google Scholar
  4. 4.
    Bliska JB, Falkow S (1992) Bacterial resiistance to complement killing mediated by the Ail protein of Yersinia enterocolitica. Proc Natl Acad Sci USA 89:3561–3565Google Scholar
  5. 5.
    Cianciotto NP, Fields BS (1992) Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci USA 89:5188–5191Google Scholar
  6. 6.
    Cianciotto NP, Eisenstein BI, Mody CH, Toews GB, Engleberg NC (1989) A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect Immun 57:1255–1262Google Scholar
  7. 7.
    Cianciotto NP, Bangsborg JM, Eisenstein BI, Engleberg NC (1990a) Identification of mip-like genes in the genus Legionella. Infect Immun 58:2912–2918Google Scholar
  8. 8.
    Cianciotto NP, Eisenstein BI, Mody CH, Engleberg NC (1990b) A mutation in the mip gene results in an attenuation of Legionella pneumophila virulence. J Infect Dis 162:121–126Google Scholar
  9. 9.
    Dwyer DE, Gibbons VL, Brady LM, Cunningham AL (1988) Serological reaction to Legionella pneumophila group 4 in a patient with Q fever. J Infect Dis 158:499–500Google Scholar
  10. 10.
    Engleberg NC, Drutz DJ, Eisenstein BI (1984) Cloning and expression of Legionella pneumophila antigens in Escherichia coli. Infect Immun 44:222–227Google Scholar
  11. 11.
    Engleberg NC, Pearlman E, Dixon D, Eisenstein BI (1986) Antibodies isolated by using cloned antigens recognize antigenically related components of Legionella pneumophila and other Legionella species. J Immunol 136:1415–1417Google Scholar
  12. 12.
    Engleberg NC, Carter C, Weber DR, Cianciotto NP, Eisenstein BI (1989) DNA sequence of mip, a Legionella pneumophila gene associated with macrophage infectivity. Infect Immun 57:1263–1270Google Scholar
  13. 13.
    Finidori JP, Raoult D, Bornstein N, Fleurette J (1992) Study of cross-reaction between Coxiella burnetii and Legionella pneumophila using indirect immunofluorescence assay and immunoblotting. Acta Virol 36:459–465Google Scholar
  14. 14.
    Fischer G, Bang H, Ludwig B, Mann K, Hacker J (1992) Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase [PPIase] activity. Mol Microbiol 6:1375–1383Google Scholar
  15. 15.
    Horwitz MA (1989) The immunobiology of Legionella pneumophila. In: Moulder JW (ed) Intracellular Parasitism. Boca Raton, FL: CRC Press Inc., pp 141–156Google Scholar
  16. 16.
    Jaulhac B, Nowicki M, Bornstein N, Meunier O, Prevost G, Piemont Y, Fleurette J, Monteil H (1992) Detection of Legionella spp, in bronchoalveolar lavage fluids by DNA amplification. J Clin Microbiol 30:920–924Google Scholar
  17. 17.
    Kato J, Chu L, Kitano K, DeVault JD, Kimbara K, Chakrabarty AM, Misra TK (1989) Nucleotide sequence of a regulatory region controlling alginate synthesis in Pseudomonas aeruginosa: characterization of the algR2 gene. Gene 84:31–38Google Scholar
  18. 18.
    Koide M, Saito A, Kusano N, Higa F (1993) Detection of Legionella spp. in cooling tower water by the polymerase chain reaction method. Appl Environ Microbiol 59:1943–1946Google Scholar
  19. 19.
    Lundemose AG, Rouch DA, Birkelund S, Christiansen G, Pearce JH (1992) Chlamydia trachomatis Mip-like protein. Mol Microbiol 6:2539–2548Google Scholar
  20. 20.
    Lundemose AG, Kay JE, Pearce JH (1993) Chlamydia trachomatis Mip-like protein has peptidyl-prolyl cis/trans isomerase activity that is inhibited by FK506 and rapamycin and is implicated in initiation of chlamydial infection. Mol Microbiol 7:777–783Google Scholar
  21. 21.
    McAllister CF, Stephens DS (1993) Analysis in Neisseria meningitidis and other Neisseria species of genes homologous to the FKBP immunophilin family. Mol Microbiol 10:13–23Google Scholar
  22. 22.
    Merrell BR, Weiss E, Dasch GA (1978) Morphological and cell association of Rochalimaea quintana: comparison of the Vole and Fuller strains. J Bacteriol 135:633–640Google Scholar
  23. 23.
    Pahl A, Keller U (1992) FK-506-binding proteins from Streptomycetes producing immunosuppressive macrolactones of the FK-506 type. J Bacteriol 174:5888–5894Google Scholar
  24. 24.
    Palmer CJ, Tsai Y-L, Paszko-Kolva C, Mayer C, Sangermano LR (1993) Detection of Legionella species in sewage and ocean water by polymerase chain reaction, direct fluorescentantibody, and plate culture methods. Appl Environ Microbiol 59:3618–3624Google Scholar
  25. 25.
    Raoult D, Dasch GA (1989) Line blot and Western blot immunoassay for diagnosis of Mediterranean spotted fever. J Clin Microbiol 27:2073–2079Google Scholar
  26. 26.
    Reschke DK, Frazier ME, Mallavia LP (1990) Transformation of Rochalimaea quintana, a member of the family Rickettsiaceae. J Bacteriol 172:5130–5134Google Scholar
  27. 27.
    Sampson BA, Gotschlich EC (1992) Neisseria meningitidis encodes an FK506-inhibitable rotamase. Proc Natl Acad Sci USA 89:1164–1168Google Scholar
  28. 28.
    Samuel JE, Frazier ME, Kahn ML, Thomashow LS, Mallavia LP (1983) Isolation and characterization of a plasmid from phase I Coxiella burnetii. Infect Immun 41:488–493Google Scholar
  29. 29.
    Standaert RF, Galat A, Verdine GL, Schreiber SL (1990) Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature 346:671–674Google Scholar
  30. 30.
    Tropschug M, Wachter E, Mayer S, Schonbrunner ER, Schmid FX (1990) Isolation and sequence of an FK506-binding protein from N. crassa which catalyses protein folding. Nature 346:674–677Google Scholar
  31. 31.
    Weisburg WG, Dobson ME, Samuel JE, Dasch GA, Mallavia LP, Baca O, Mandelco L, Sechrest JE, Weiss E, Woese CR (1989) Phylogenetic diversity of the Rickettsiae. J Bacteriol 171:4202–4206Google Scholar
  32. 32.
    Weiss E, Moulder JW (1984) Order I. Rickettsiales. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey's Manual of Systematic Bacteriology. Baltimore: The Williams & Wilkins Co., pp 687–729Google Scholar
  33. 33.
    Weiss E, Coolbaugh JC, Williams JC (1975) Separation of viable Rickettsia typhi from yolk sac and L cell host cell components by Renografin density gradient centrifugation. Appl Microbiol 30:456–463Google Scholar
  34. 34.
    Weiss E, Dasch GA, Kang Y-H, Westfall HN (1988) Substrate utilization by Ehrlichia sennetsu and Ehrlichia risticii separated from host constituents by Renografin gradient centrifugation. J Bacteriol 170:5012–5017Google Scholar
  35. 35.
    Williams JC, McCaul TF, Thompson HA, Waag DM (1989) Molecular strategies for uptake and phagolysosomal growth of Coxiella burnetii in nonimmune and immune hosts. In: Moulder JW (ed) Intracellular parasitism. Boca Raton, FL: CRC Press Inc., pp 127–140Google Scholar
  36. 36.
    Woodman DR, Weiss E, Dasch GA, Bozeman FM (1977) Biological properties of Rickettsia prowazekii strains isolated from flying squirrels. Infect Immun 15:280–286Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • Nicholas P. Cianciotto
    • 1
  • William O'Connell
    • 1
  • Gregory A. Dasch
    • 2
  • Louis P. Mallavia
    • 3
  1. 1.Department of Microbiology-ImmunologyNorthwestern UniversityChicagoUSA
  2. 2.Viral and Rickettsial Diseases Program, Naval Medical Research InstituteNational Naval Medical CenterBethesdaUSA
  3. 3.Department of MicrobiologyWashington State UniversityPullmanUSA

Personalised recommendations