Intensive Care Medicine

, Volume 15, Issue 2, pp 116–120

In vitro colloid osmotic pressure of commonly used plasma expanders and substitutes: a study of the diffusibility of colloid molecules

  • A. R. Webb
  • S. A. Barclay
  • E. D. Bennett
Original Articles


The rational choice of a plasma substitute for states of hypovolaemia depends partly on its colloid osmotic pressure (COP). We have measured the COP of 108 samples of plasma substitute across selectively permeable membranes which retain molecules greater than 10000 dalton (COP10) and 50000 dalton (COP50) the ratio COP50/COP10 providing a potential index of diffusibility of the smaller molecules across capillary membranes. 6% Hespan solution showed a particularly favourable COP50/COP10 ratio at 0.58 indicating a potential for good retention in the circulation whilst 3.5% Haemaccel showed a COP50/COP10 ratio of 0.18 indicating a potential for marked transcapillary diffusion, especially in states of capillary leak. In patients with normal capillary permeability both Gelofusine and Dextran 110 are likely to show adequate retention in the circulation with a COP50/COP10 ratio of 0.37 and 0.39 respectively. These are comparable to the retention of 4.5% human albumin (0.36) but all of the plasma substitutes tested, with the exception of Haemaccel, provided a higher COP across both membranes than 4.5% human albumin solution. An in vivo comparison of these plasma substitutes is required to confirm the advantages of macromolecular colloids in states of capillary leak.

Key words

Colloid osmotic pressure Plasma substitutes-diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haupt MT, Rackow EC (1982) Colloid osmotic pressure and fluid resuscitation with hetastarch, albumin, and saline solutions. Crit Care Med 10:159Google Scholar
  2. 2.
    Mudge GH (1985) Agents affecting volume and composition of body fluids. In: Goodman LS, Gilman A (eds) The Pharmacological basis of Therapeutics, 7th edn. Bailliere Tindall, London, p 846Google Scholar
  3. 3.
    Yamasaki H (1973) The colloid osmotic pressure of normal human blood, Dextran and Hydroxyethyl starch. Jpn Anaesthesiol 22:1349Google Scholar
  4. 4.
    Barclay SA (1987) Colloid osmotic pressure: its measurement and role in clinical cardiovascular medicine. PhD thesis, University of LondonGoogle Scholar
  5. 5.
    Grotte G (1956) Passage of dextran molecules across the blood lympth barrier. Acta Chir Scand 211 [Suppl]:1Google Scholar
  6. 6.
    Landis EM, Pappenhimer JR (1963) Exchange of substances through capillary walls. In: Handbook of Physiology. Circulation, Vol 2, sect 2, chapt 29. American Physiological Society, Washington DC, p 961Google Scholar
  7. 7.
    Taylor AE, Gaar KA (1970) Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am J Physiol 218:1133Google Scholar
  8. 8.
    Michel CC (1984) Fluid movements through capillary walls. In: Handbook of Physiology. Cardiovascular System IV, Chapt 9. American Physiological Society, Washington DC, p 375Google Scholar
  9. 9.
    Sibbald W, Driedger A, Wells G, Myers ML, Sefcoe M (1983) The short term effects of incrasing plasma COP in patients with noncardiac pulmonary oedema. Surgery 93:620Google Scholar
  10. 10.
    Meteldi LS, Shackford SR, Virgilio RW, Peters RM (1984) Crystalloid versus colloid in fluid reuscitation of patients with severe pulmonary insufficiency. Surg Gynaecol, Obstet 158:207Google Scholar
  11. 11.
    Mishler J (1984) Synthetic plasma volume expanders — Their pharmacology, safety and clinical efficacy. Clin Haematol 13:75Google Scholar
  12. 12.
    Lindlad G, Falk K (1976) Konzentrationsverlauf von Hydroxyäthylstärke und Dextran in Serum and Lebergewebe von Kaninchen und die histopathologischen Folgen der Speicherung von Hydroxyathylstarke. Infusionstherapie 3:301Google Scholar
  13. 13.
    Hedin H, Richter W, Messmer K, Renck M, Tjungström RG, Taubenthal M (1981) Incidence, pathomechanism and prevention of dextran induced anaphylacticoid/anaphylactic reactions in man. Dev Biol Stand 48:179Google Scholar
  14. 14.
    Ring J, Messner K (1977) Incidence and sevverity of anaphylacticoid reactions to colloid volume substitutes. Lancet I:466Google Scholar
  15. 15.
    Ring J, Richter W (1980) Wirkungsmechanismus unerwünschter Reaktionen nach Hydroxyäthylstärke und Humanalbumin. Allergologie 3:79Google Scholar
  16. 16.
    Weis KH (1983) Haemaccel 35: nebenreaktionen in einer multizentrischen, prospectiven Studie. Anaesthetist 32:488Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. R. Webb
    • 1
  • S. A. Barclay
    • 2
  • E. D. Bennett
    • 2
  1. 1.Intensive Therapy UnitSt. George's HospitalLondonUK
  2. 2.Department of Medicine ISt. George's Hospital Medical SchoolLondonUK

Personalised recommendations