Human Genetics

, Volume 38, Issue 1, pp 57–63 | Cite as

Activation of mouse ribosomal RNA genes at the 2-cell stage

  • W. Engel
  • Maria T. Zenzes
  • M. Schmid
Original Investigations


The Ag-AS method, developed by Goodpasture and Bloom (1975) stains transcriptionally active nucleolus organizer regions (NORs) on the chromosomes and in the interphase nuclei. Metaphases and interphase nuclei of early mouse embryos (unfertilized eggs, pronucleus stages, 2-, 4-, 8-cell stages, and morulae) were subjected to silver-staining. First staining of a single chromosome bearing an NOR was observed at the 2-cell stage. At the 4-cell stage 4–6 chromosomes, and at the 8-cell stage invariably all the 6 chromosomes known to bear NORs, respond positively to silver-staining. These results indicate that during mouse embryogenesis ribosomal RNA genes start to function at the 2-cell stage. The polar body does not respond to silver-staining, which supports the view that the polar body genome remains inactive.


Internal Medicine Metabolic Disease Mouse Embryo Organizer Region Polar Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernstein, R. M., Mukherjee, B. B.: Cytoplasmic control of nuclear activity in preimplantation mouse embryos. Develop. Biol. 34, 47–65 (1973)PubMedGoogle Scholar
  2. Bigger, T. R. L., Savage, J. R. K.: Location of nucleolar organizing regions on the chromosomes of the Syrian hamster (Mesocricetus auratus) and the Djungarian hamster (Phodopus sungorus). Cytogenet. Cell Genet. 16, 495–504 (1976)PubMedGoogle Scholar
  3. Bloom, S. E., Goodpasture, C.: An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Hum. Genet. 34, 199–206 (1976)PubMedGoogle Scholar
  4. Bramwell, M. E., Handmaker, S. D.: Ribosomal RNA synthesis in human-mouse hybrid cells. Biochim. Biophys. Acta 232, 580–583 (1971)PubMedGoogle Scholar
  5. Brinster, R. L.: Parental glucose phosphate isomerase activity in three-day mouse embryos. Biochem. Genet. 9, 187–191 (1973)PubMedGoogle Scholar
  6. Brown, D. D., Littna, E.: RNA synthesis during the development of Xenopus laevis, the South African clawed toad. Mol. Biol. 8, 669–687 (1964)Google Scholar
  7. Chapman, V. M., Adler, D., Labarca, C. Wudl, L.: Genetic variation of β-glucuronidase expression during early embryogenesis. Ciba Found. Symp. 40 (new series), 124–131 (1976)Google Scholar
  8. Church, R. B., Schultz, G. A.: Differential gene activity in the pre- and postimplantation mammalian embryo. Curr. Top. Dev. Biol. 8, 179–202 (1974)PubMedGoogle Scholar
  9. Cooper, H. L.: Studies on RNA metabolism during lymphocyte activation. Transplant. Rev. 11, 3–38 (1972)PubMedGoogle Scholar
  10. Croce, C. M., Talavera, A., Basilico, C. Miller, O. J.: Suppression of production of mouse 28S ribosomal RNA in mouse-human hybrids segregating mouse chromosomes. Proc. nat. Acad. Sci. (Wash.) 74, 694–697 (1977)Google Scholar
  11. Ellem, K. A., Gwatkin, R. B. L.: Patterns of nucleic acid synthesis in the early mouse embryo. Develop. Biol. 18, 311–330 (1968)PubMedGoogle Scholar
  12. Eliceiri, G. L., Green, H.: Ribosomal RNA synthesis in human-mouse hybrid cells. J. molec. Biol. 41, 253–260 (1969)PubMedGoogle Scholar
  13. Engel, W., Franke, W.: Maternal storage in the mammalian oocyte Curr. Top. Pathol. 62, 29–52 (1976)PubMedGoogle Scholar
  14. Epstein, C. J.: Expression of the mammalian X-chromosome before and after fertilization. Science 175, 1467–1468 (1972)PubMedGoogle Scholar
  15. Epstein, C. J.: Gene expression and macromolecular synthesis during preimplantation embryonic development. Biol. Reprod. 12, 82–105 (1975)PubMedGoogle Scholar
  16. Erickson, R. P.: Androgen-modified expression compared with Y-linkage of male specific antigen. Nature 265, 59–61, (1977)PubMedGoogle Scholar
  17. Galdieri, M., Monesi, V.: Ribosomal RNA in mouse spermatocytes. Exp. Cell Res. 85, 287–295 (1974)PubMedGoogle Scholar
  18. Goodpasture, C., Bloom, S. E.: Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma (Berl.) 53, 37–50 (1975)Google Scholar
  19. Henderson, A. S., Eicher, E. M., Yu, M. T., Atwood, K. C.: The chromosomal location of ribosomal DNA in the mouse. Chromosoma (Berl.) 49, 155–160 (1974)Google Scholar
  20. Hillman, N., Tasca, R. J.: Ultrastructural and autoradiographic studies of mouse cleavage stages. Amer. J. Anat. 126, 151–174 (1970)Google Scholar
  21. Howell, W. M., Denton, T. E., Diamond, J. R.: Differential staining of the satellite regions of human acrocentric chromosomes. Experientia (Basel) 31, 260–262 (1975)Google Scholar
  22. Knowland, J., Graham, C.: RNA synthesis at the two-cell stage of the mouse development. J. Embryol. exp. Morph. 27, 167–176 (1972)PubMedGoogle Scholar
  23. Kozak, P. L., Quinn, P. J.: Evidence for dosage compensation of an X-linked gene in the 6-day embryo of the mouse. Develop. Biol. 45, 65–73 (1975)PubMedGoogle Scholar
  24. Krco, C. J., Goldberg, E. H.: H-Y (male) antigen: detection on eight-cell mouse embryos. Science 193, 1134–1135 (1976)PubMedGoogle Scholar
  25. Manes, C.: Genetic and biochemical activities in preimplantation embryos. In: The developmental biology of reproduction, C. L. Markert, J. Papaconstantinou, eds., pp 133–163. New York-San Francisco-London: Academic Press 1975Google Scholar
  26. Marshall, C. J., Handmaker, S. D., Bramwell, M. E.: Synthesis of ribosomal RNA in synkaryons and heterokaryons formed between human and rodent cells. J. Cell Sci. 17, 307–325 (1975)PubMedGoogle Scholar
  27. Miller, D. A., Dev, V. G., Tantravahi, R. Miller, O. J.: Suppression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Exp. Cell Res. 101, 235–243 (1976a)PubMedGoogle Scholar
  28. Miller, O. J., Miller, D. A., Dev, V. G., Tantravahi, R., Croce, C. M.: Expression of human and suppression of mouse nucleolus organizer activity in mouse-human somatic cell hybrids. Proc. nat. Acad. Sci. (Wash.) 73, 4531–4535 (1976b)Google Scholar
  29. Muggleton-Harris, A. L., Johnson, M. H.: The nature and distribution of serologically detectable alloantigens on the preimplantation mouse embryo. J. Embryol. exp. Morph. 35, 59–72 (1976)PubMedGoogle Scholar
  30. Pikó, L.: Expression of mitochondrial and nuclear genes during early development. In: The early development of mammals, M. Balls, A. E. Wild, eds., pp. 167–187. London-New York-Melbourne: Cambridge University Press 1975Google Scholar
  31. Purtell, M. J., Anthony, D. D.: Changes in ribosomal RNA processing paths in resting and phytohemagglutinin-stimulated guinea pig lymphocytes. Proc. nat. Acad. Sci. (Wash.) 72, 3315–3319 (1975)Google Scholar
  32. Tantravahi, R., Miller, D. A., Dev, V. G., Miller, O. J.: Detection of nucleolus organizer regions in chromosomes of human, chimpanzee, gorilla, orang-utan and gibbon. Chromosoma (Berl.) 56, 15–27, (1976)CrossRefGoogle Scholar
  33. Tarkowski, A. K.: An air-drying method for chromosome preparations from mouse eggs. Cytogenetics 5, 394–400 (1966)Google Scholar
  34. Tata, J. R.: Hormonal regulation of growth and protein synthesis. Nature 219, 331–337 (1968)PubMedGoogle Scholar
  35. Tres, L. L.: Nucleolar RNA synthesis of meiotic prophase spermatocytes in the human testis. Chromosoma (Berl.) 53, 141–151 (1975)Google Scholar
  36. Wolf, U., Engel, W.: Gene activation during early development of mammals. Humangenetik 15, 99–118 (1972)PubMedGoogle Scholar
  37. Woodland, H. R., Graham, C. F.: RNA synthesis during early development of the mouse. Nature 221, 327–332 (1969)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • W. Engel
    • 1
  • Maria T. Zenzes
    • 1
  • M. Schmid
    • 2
  1. 1.Institut für Humangenetik und AnthropologieFreiburgGermany
  2. 2.Abteilung für Humangenetik der UniversitätUlmGermany

Personalised recommendations