Current Microbiology

, Volume 31, Issue 1, pp 23–27

Bifidobacteria and probiotic effects: Action of Bifidobacterium species on conjugated bile salts

  • J. P. Grill
  • C. Manginot-Dürr
  • F. Schneider
  • J. Ballongue
Article

Abstract

The effect of six different conjugated bile salts (two trihydroxyconjugated bile salts: tauro and glycocholic acids; and four dihydroxyconjugated bile salts: tauro- and glycochenodeoxycholic, tauro- and glycodeoxycholic acids) on eight bifidobacteria strains were studied. A strong growth-inhibitory effect was observed (80% at 0.95mm) for each bile salt and strain. This phenomenon was explained by the production of deconjugated bile salt during bifidobacteria growth. The deconjugation phenomenon was concurrent with biomass production, and deconjugated bile salts were the sole compound produced during bifidobacteria biotransformation. In resting cell experiments, differences appeared between the strains and the kind of bile salts, particularly concerning taurocholic acid. The Bifidobacterium longum strains were the most efficient among the bacteria tested.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Akiyoshi T, Nakayama F (1990) Bile acid composition in brown pigment stone. Dig Dis Sci 35:27–32Google Scholar
  2. 2.
    Aries V, Hill MJ (1970a) Degradation of steroids by intestinal bacteria I. Deconjugation of bile salt. Biochim Biophys Acta 202:526–534Google Scholar
  3. 3.
    Aries V, Hills MJ (1970b) Degradation of steroids by intestinal bacteria II. Enzymes catalysing the oxidoreduction of the 3α, 7α and 12α hydroxyl groups in cholic acid, and the dehydroxylation of the 7 hydroxyl group. Biochim Biophys Acta 202:535–543Google Scholar
  4. 4.
    Ballongue J (1993) Bifidobacteria and probiotic action. In: Salinen S, Von Wright A (eds) Lactic acid bacteria. New York: Marcel Dekker, Inc., pp 357–427Google Scholar
  5. 5.
    Ballongue J, Grill JP, Baratte-Euloge P (1993) Action sur la flore intestinale de lait fermentés au Bifidobacterium. Le Lait 73:249–256Google Scholar
  6. 6.
    Benno Y, Sawada K, Mitsuoka T (1984) The intestinal microflora of infants: composition of faecal flora in breast-fed and bottle fed infants. Microbiol Immun 28:975–986Google Scholar
  7. 7.
    Blinder HJ, Filburn B, Floch M (1975) Bile acid inhibition of intestinal ananerobic organism. Am J Clin Nutr 28:119–125Google Scholar
  8. 8.
    Chateau N, Deschamps AM, Hadj Sasi A (1994) Heterogeneity of bile salts resistance in Lactobacillus isolates of a probiotic consortium. Lett Appl Microbiol 18:42–44Google Scholar
  9. 9.
    Christiaens H, Leer RJ, Powels PH, Verstraete W (1992) Cloning and expression of a conjugated bile acid hydrolase from Lactobacillus plantarum by using a direct plate assay. Appl Env Microbiol 58:3792–3798Google Scholar
  10. 10.
    Church FC, Porter DH, Catagnagni GL, Swaisgood HE (1985) An O-phtalaldehyde spectrophotometric assay for proteinases. Anal Biochem 146:343–348Google Scholar
  11. 11.
    Drasar BS, Hill MJ (1974) Human intestinal flora. London, New York, San-Francisco: Academic PressGoogle Scholar
  12. 12.
    Fernandes CF, Shahany KM, Amer MA (1987) Therapeutic role of dietary Lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol Rev 46:343–361Google Scholar
  13. 13.
    Ferrari A, Pacini N, Canzi E (1980) A note on bile acids transformations by strains of Bifidobacterium. J Applied Bacteriol 49:193–197Google Scholar
  14. 14.
    Floch MH, Gerhengoren W, Diamond S, Hersh T (1970) Cholic acid inhibition of intestinal bacteria. Am J Clin Nutr 23:8–10Google Scholar
  15. 15.
    Floch MH, Gershengoren W, Elliot S, Spiro N (1971) Bile acid inhibition of the intestinal microflora. A function for simple bile acid? Gastroenterology 61:228–232Google Scholar
  16. 16.
    Gilliland SE (1989) Acidophilus milk products: a review of potential benefits to consumers. J Dairy Sci 72:2483–2494Google Scholar
  17. 17.
    Gilliland SE (1990) Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol Rev 87:175–188Google Scholar
  18. 18.
    Gilliland SE, Speck ML (1977) Deconjugation of bile acids by intestinal lactobacilli. Appl Env Microbiol 33:15–18Google Scholar
  19. 19.
    Gopal-Srivastava R, Hylemon PB (1988) Purification and characterization of bile salt hydrolase from Clostridium perfringens. J Lipid Res 29:1079–1085Google Scholar
  20. 20.
    Hughes DB, Hoover DG (1991) Bifidobacteria: their potential for use in American dairy products. Food Technol April: 74–83Google Scholar
  21. 21.
    Hylemond PB (1985) Metabolism of bile acids in intestinal microflora. In: Danielson H, Sjövall J (eds) Sterols and bile acids. New York: Elsevier Science Publishing Inc, pp 331–343Google Scholar
  22. 22.
    Ibrahim SA, Bezkorovainy A (1993) Survival of bifidobacteria in the presence of bile salt. J Sci Food Agric 62:351–354Google Scholar
  23. 23.
    Irvin JL, Johnston CG, Kopalo J (1944) A photometric method for the determination of cholates in bile and blood. J Biol Chem 153:439–457Google Scholar
  24. 24.
    Khattab AA, Abou-Donia SA (1987) The effect of bile salt on the growth of some lactic acid cultures. Egypt J Dairy Sci 15:51–56Google Scholar
  25. 25.
    Lundeen SG, Savage DC (1990) Characterization and purification of bile salt hydrolase from Lactobacillus sp strain 100-100. J Bacteriol 172:4171–4177Google Scholar
  26. 26.
    Lundeen SG, Savage DL (1992) Characterization of an extracellular factor that stimulates bile salt hydrolase activity of Lactobacillus sp strain 100-100. J Bacteriol 172:121–126Google Scholar
  27. 27.
    Masuda N (1980) Deconjugation of bile salts by Bacteroides and Clostridium. Microbiol Immunol 25:1–11Google Scholar
  28. 28.
    Midtvedt T, Norman A (1968) Parameters in 7αdehydroxylation of bile acids by anaerobic lactobacilli. Acta Pathol Microbiol Scand 72:313–329Google Scholar
  29. 29.
    Scardovi V (1986) Bifidobacterium. In: Sneath HA, Mair NS, Sharpe ME, Holt JG (eds) Bergey's manual of systematic bacteriology, Vol 2, 9th ed. Baltimore: Williams and Wilkins, pp 1418–1434Google Scholar
  30. 30.
    Stellwag EJ, Hylemond PB (1976) Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim Biophys Acta 452:165–176Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • J. P. Grill
    • 1
  • C. Manginot-Dürr
    • 1
  • F. Schneider
    • 1
  • J. Ballongue
    • 1
  1. 1.Institut Henry Tissier, Laboratoire de Chimie Biologique IUniversité de Nancy IVandoeuvre lès NancyFrance

Personalised recommendations