Acta Neuropathologica

, Volume 82, Issue 3, pp 225–228 | Cite as

Neuronal autophagy in experimental scrapie

  • J. W. Boellaard
  • M. Kao
  • W. Schlote
  • H. Diringer
Short Original Communication


In this study we report the formation of giant autophagic vacuoles (AV) in neurons in experimental scrapie in hamsters. Autophagy is an important step in the cellular turnover of proteins and organelles. It is known to occur in neurons under physiological as under pathological conditions. Giant AV, however, are seen very rarely only in pathological states. In our model AV are much more numerous after intracerebral (i.c.) transmission of the scrapie agent than after the transmission via the intraperitoneal route which points to a correlation between the intensity of the process and the period of incubation. As the appearance of the AV in our model is correlated chronologically with that of scrapie-associated fibrils, at least after i.c. transmission, the process may be related to a disturbance of cellular protein metabolism and, thus, to the processing of prion protein.

Key words

Scrapie Prion Neuronal autophagy Lysosomes Lipofuscin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barron KD, Means ED, Larsen, E (1973) Ultrastructure of retrograde degeneration in thalamus of rat I. Neuronal somata and dendrites. J Neuropathol Exp Neurol 32: 218–244Google Scholar
  2. 2.
    Boellaard JW, Schlote W, Tateishi J (1989) Neuronal autophagy in experimental Creutzfeldt-Jakob disease. Acta Neuropathol 78:410–418Google Scholar
  3. 3.
    Boellaard JW, Kao M, Schlote W, Diringer H (1991) Neuronal autophagy in experimental scrapie. Clin Neuropathol 10:98Google Scholar
  4. 4.
    Brunk U, Ericsson ILE (1972) Electron microscopic studies on rat brain neurons. Localisation of acid phosphatase and mode of formation of lipofuscin bodies. J Ultrastruct Res 38:1–15Google Scholar
  5. 5.
    Czub M, Braig HR, Diringer H (1988) Replication of scrapie agent in hamsters infected intracerebrally confirms the pathogenesis of an amyloid-inducing virosis. J Gen Virol 69:1753–1756Google Scholar
  6. 6.
    de Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492Google Scholar
  7. 7.
    Holtzman E (1969) Lysosomes in the physiology and pathology of neurons. In: Dingle JT, Fell HB (eds) Lysosomes in biology and pathology. North Holland, Amsterdam London, pp 192–216Google Scholar
  8. 8.
    Holtzman E (1989) Lysosomes. Plenum Press, New York, pp 243–318Google Scholar
  9. 9.
    Holtzman E, Novikoff AB, Villaverde H (1967) Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum. J Cell Biol 33:419–435Google Scholar
  10. 10.
    Hruban Z, Spargo B, Swift H, Wissler RW, Kleinfeld RG (1963) Focal cytoplasmic degradation. Am J Pathol 42:657–677Google Scholar
  11. 11.
    Kimberlin RH, Walker CA (1977) Characteristics of a short incubation model of scrapie in the golden hamster. J Gen Virol 34:294–304Google Scholar
  12. 12.
    Kretschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122:1–5Google Scholar
  13. 13.
    Liberski PP, Yanagihara R, Gibbs CJ, Jr, Gajdusek DC (1991) Neuronal autophagic vacuoles in experimental Creutzfeld-Jakob disease and scrapie. Acta Neuropathol (in press)Google Scholar
  14. 14.
    Masurovsky EB, Bunge MB, Bunge RP (1967) Cytological studies of organotypic cultures of rat dorsal root ganglia following X-irradiation. I. Changes in neurons and satellite cells. J Cell Biol 32:467–496Google Scholar
  15. 15.
    Mortimore GE, Schworer CM (1977) Induction of autophagy by amino acid deprivation in perfused rat liver. Nature 270:174–176Google Scholar
  16. 16.
    Palay SL, McGee-Russell SM, Gordon S, Grillo MA (1962) Fixation of neural tissue for electron microscopy by perfusion with solutions of osmium tetroxide. J Cell Biol 12:385–410Google Scholar
  17. 17.
    Schwarze PE, Seglen PO (1980) Protein metabolism and survival of rat hepatocytes in early culture. Exp Cell Res 130:185–190Google Scholar
  18. 18.
    Seglen PO (1987) Regulation of autophagic protein degradation in isolated liver cells. In: Glaumann H, Ballard FJ (eds) Lysosomes: their role in protein breakdown. Acad Press, London New York, pp 371–414Google Scholar
  19. 19.
    Somogyi P, Takagi H (1982) A note on the use of picric acid-paraformaldehyde-glutaraldehyde fixative for correlated light and electron microscopic immunocytochemistry. Neuroscience 7:1779–1783Google Scholar
  20. 20.
    Terry RD, Wisniewski H, Johnson AB (1970) Studies on the formation of autophagic vacuoles in neurons treated with spindle inhibitors (colchicine and vinblastine). J Neuropathol Exp Neurol 29:142–143Google Scholar
  21. 21.
    Wisniewski H, Terry RD (1967) Experimental colchicine encephalopathy. I. Induction of neurofibrillary degeneration. Lab Invest 17:577–587Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. W. Boellaard
    • 1
  • M. Kao
    • 2
  • W. Schlote
    • 3
  • H. Diringer
    • 4
  1. 1.Institut für Hirnforschung der UniversitätTübingenFederal Republic of Germany
  2. 2.The Wistar Institute of Biology and AnatomyPhiladelphiaUSA
  3. 3.Neurologisches Institut de UniversitätFrankfurt/M 71Federal Republic of Germany
  4. 4.Robert Koch Institut des BundesgesundheitsamtesBerlin 65Federal Republic of Germany

Personalised recommendations