Advertisement

Chromosoma

, Volume 30, Issue 1, pp 1–37 | Cite as

DNS-Gehalt und Chromosomenstruktur bei Amphibien

  • Fritz-Helmut Ullerich
Article

Zusammenfassung

  1. 1.

    In Ergänzung voraufgegangener Untersuchungen an Amphibien (Ullerich, 1966, 1967) wurden die Karyotypen von Hyla arborea, Bombina variegata, B. bombina, Triturus vulgaris, T. alpestris und Salamandra salamandra an Colchicin-behandelten Spermatogonien-Metaphasen untersucht und die relativen DNS-Gehalte ihrer Genome durch cytophotometrische Messungen an Feulgen-gefärbten Erythrocytenkernen bestimmt.

     
  2. 2.

    Das Fehlen interspezifischer Verdopplungsstufen im DNS-Gehalt der Genome aller bisher untersuchter Arten schließt bereits nahezu aus, daß die bestehenden interspezifischen DNS-Differenzen auf differentieller Polynemie der Chromosomen beruhen.

     
  3. 3.

    Elektronenmikroskopische Untersuchungen an den Trypsin- und RNase-resistenten, aber DNase-sensiblen Achsenstrukturen der Lampenbürstenchromosomen von Bufo calamita, B. viridis, B. bufo, Rana es. culenta, Bombina variegata und Triturus alpestris bestätigen, daß die Chromosomen dieser Arten nicht polynem sind; bei allen Species bestehen sie aus der gleichen Anzahl von DNS-Längselementen.

     
  4. 4.

    Eine differentielle Polynemie der Chromosomen scheidet somit als Ursache der interspezifischen Unterschiede im DNS-Gehalt der Genome bei diesen Arten und wahrscheinlich generell bei allen Amphibien aus.

     
  5. 5.

    Die bei allen elektronenmikroskopisch untersuchten Arten abschnittsweise beobachtete Doppelsträngigkeit der Chromatidenachsen, die auf der Existenz von Halbchromatiden beruhen könnte, wird diskutiert; da beide Fibrillen an den dünnsten Stellen einen Durchmesser von 20–35 ÅE aufweisen, dürften sie nur je eine DNS-Doppelhelix enthalten.

     
  6. 6.

    Die interspezifischen Unterschiede im DNS-Gehalt der Genome der analysierten Amphibienarten werden auf lokale DNS-Zunahme in den Chromosomen während der Artdifferenzierung zurückgeführt.

     

DNA content and chromosome structure in amphibians

Abstract

Comparative karyotype analysis and cytophotometric DNA measurements on further amphibian species (Hyla arborea, Bombina variegata, B. bombina, Triturus vulgaris, T. alpestris, and Salamandra salamandra) were carried out. The relative DNA values of the genomes determined for these species and other amphibians investigated earlier (Ullerich, 1966, 1967), already do nearly exclude the hypothesis that the interspecific differences in DNA content in frogs, toads, and salamanders are caused by differential polynemy of their chromosomes. Electron microscopic investigations on the DNA axes of lampbrush chromosomes of Bufo calamita, B. viridis, B. bufo, Rana esculenta, Bombina variegata, and Triturus alpestris treated with trypsin and ribonuclease confirm that the chromosomes of these species are not polynemic; in all species analysed the lampbrush chromosomes consist of the same number of DNA strands. The double-strandedness observed regularly in several segments of the chromatid axes in the loops as well as in the interchromomeric regions of all species suggest that the chromatids possibly are divided into half-chromatids. The minimum diameter of these two deoxyribonuclease-sensitive fibrills is 20–35 Å, whereas the chromatid axes in those segments which do not show double-strandedness mostly measure 40–65 Å. The high DNA amounts and interspecific differences in DNA content in the amphibian species analysed, probably in all amphibians, therefore must be caused during evolutionary processes by local increase (perhaps in a smaller extent also by-local decrease) in DNA in the chromosomes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bajer, A.: Subchromatid structure of chromosomes in the living state. Chromosoma (Berl.) 17, 291–302 (1965).Google Scholar
  2. Beçak, M. L.: Chromosomal analysis of eighteen species of Anura. Caryologia 21, 191–208 (1968).Google Scholar
  3. —, Beçak, W., Rabello, M. N.: Cytological evidence of constant tetraploidy in the bisexual south american frog Odontophrynus americanus. Chromosoma (Berl.) 19, 188–193 (1966).Google Scholar
  4. —: Further studies on polyploid amphibians (Ceratophrydidae). I. Mitotic and meiotic aspects. Chromosoma (Berl.) 22, 192–201 (1967).Google Scholar
  5. Beçak, W., Beçak, M. L., Lavalle, D., Schreiber, G.: Further studies on polyploid amphibians (Ceratophrydidae). II. DNA content and nuclear volume. Chromosoma (Berl.) 23, 14–23 (1967).Google Scholar
  6. Bier, K., Müller, W.: DNS-Messungen bei Insekten und eine Hypothese über retardierte Evolution und besonderen DNS-Reichtum im Tierreich. Biol. Zbl. 88, 425–449 (1969).Google Scholar
  7. Brinkley, B. R., Humphrey, R. M.: Evidence for subchromatid organization in marsupial chromosomes. I. Light and electron microscopy of X-ray-induced side-arm bridges. J. Cell Biol. 42, 827–831 (1969).Google Scholar
  8. Britten, R. J., Kohne, D. E.: Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161, 529–540 (1968).Google Scholar
  9. Callan, H. G.: The nature of lampbrush chromosomes. Int. Rev. Cytol. 15, 1–34 (1963).Google Scholar
  10. —: Chromosomes and nucleoli of the axolotl, Ambystoma mexicanum. J. Cell Sci. 1, 85–108 (1966).Google Scholar
  11. —: The organization of genetic units in chromosomes. J. Cell Sci. 2, 1–7 (1967).Google Scholar
  12. —, Lloyd, L.: Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti). Phil. Trans. B 243, 135–219 (1960).Google Scholar
  13. —, Macgregor, H. C.: Action of deoxyribonuclease on lampbrush chromosomes. Nature (Lond.) 181, 1479–1480 (1958).Google Scholar
  14. Christensen, B.: Cytophotometric studies on the DNA content in diploid and polyploid Enchytraeidae, (Oligochaeta). Chromosoma (Berl.) 18, 305–315 (1966).Google Scholar
  15. Galgano, M.: Evoluzione degli spermatociti di I ordine e cromosomi pseudosessuali in alcune specie di Anfibi. Arch. ital. Anat. Embr. 32, 171–200 (1933).Google Scholar
  16. Gall, J. G.: Lampbrush chromosomes from oocyte nuclei of the newt. J. Morph. 94, 283–352 (1954).Google Scholar
  17. —: On the submicroscopic structure of chromosomes. Brookhaven Symp. Biol. 8, 17–32 (1956).Google Scholar
  18. —: Kinetics of deoxyribonuclease action on chromosomes. Nature (Lond.) 198, 36–38 (1963a).Google Scholar
  19. —: Chromosomes and cytodifferentiation. In: Cytodifferential and macromolecular synthesis. New York: Academic Press 1963b.Google Scholar
  20. Goin, O. B., Goin, C. J., Bachmann, K.: DNA and amphibian life history. Copeia (Wash.) 1968, 532–540.Google Scholar
  21. Halkka, O.: A photometric study of the Luzula problem. Hereditas (Lund) 52, 81–88 (1964).Google Scholar
  22. Heddle, J. A., Bodycote, D. J.: The strandedness of lampbrush chromosomes. J. Cell Biol. 43, 52a (1969).Google Scholar
  23. Hertwig, G.: Kern- und Zellgrößenunterschiede der Eltern als Ursache des verschiedenen Ausfalls reziproker Krötenbastarde. Z. Anat. Entwickl.-Gesch. 92, 718–739 (1930).Google Scholar
  24. —: Hochgradige Polynemie der Chromosomen als Ursache der vergleichsweise erheblichen Zell- und Kerngröße der Amphibien. Verh. anat. Ges. (Jena) 53, 104–112 (1956).Google Scholar
  25. Hess, O.: Funktionelle und strukturelle Organisation der Lampenbürsten-Chromosomen. In: Probleme der biologischen Reduplikation S. 29–54. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  26. Hughes-Schrader, S.: The meiotic chromosomes of the male Llaveiella taenechina Morrison (Coccoidea) and the question of the tertiary split. Biol. Bull. 78, 312–337 (1940).Google Scholar
  27. —: Differential polyteny and polyploidy in diaspine coccids (Homoptera: Coccoidea). Chromosoma (Berl.) 8, 709–718 (1957).Google Scholar
  28. —: The DNA content of the nucleus as a tool in the cytotaxonomic study of insects. Proc. 10th Intern. Congr. Entomol. 2, 935–944 (1958).Google Scholar
  29. Hughes-Schrader, S., Schrader, F.: Polyteny as a factor in the chromosome evolution of the Pentatomini (Hemiptera). Chromosoma (Berl.) 8, 135–151 (1956).Google Scholar
  30. —: The Nezara complex (Pentatomidae-Heteroptera) and its taxonomic and cytological status. J. Morph. 101, 1–24 (1957).Google Scholar
  31. Inger, R. F.: The development of a phylogeny of frogs. Evolution (Lawrence, Kans.) 21, 369–384 (1967).Google Scholar
  32. Iriki, S.: Studies on amphibian chromosomes. I. On the chromosomes of Hyla arborea japonica Guenther. Mem. Coll. Sci. Kyoto Imp. Univ., Ser. B 5, 1–19 (1930).Google Scholar
  33. Kaufmann, B. P., Gay, H., McDonald, M. R.: Organizational patterns within chromosomes. Int. Rev. Cytol. 9, 77–127 (1960).Google Scholar
  34. Keyl, H.-G.: Duplikationen von Untereinheiten der chromosomalen DNS während der Evolution von Chironomus thummi. Chromosoma (Berl.) 17, 139–180 (1965).Google Scholar
  35. Kessous, A., Caussinus, H., Jaylet, A., Beetschen, J. C.: Essai d'analyse biométrique du caryotype de l'amphibien urodèle Salamandra salamandra L. Chromosoma (Berl.) 23, 324–332 (1968).Google Scholar
  36. LaCour, L. F., Pelc, S. R.: Effect of colchicine on the utilization of labelled thymidine during chromosomal reproduction. Nature (Lond.) 182, 506–508 (1958).Google Scholar
  37. Lezzi, M.: Cytochemische Untersuchungen an Puffs isolierter Speicheldrüsen-Chromosomen von Chironomus. Chromosoma (Berl.) 21, 89–108 (1967).Google Scholar
  38. Macgregor, H. C., Callan, H. G.: The actions of enzymes on lampbrush chromosomes. Quart. J. micr. Sci. 103, 173–203 (1962).Google Scholar
  39. Mello-Sampayo, T.: Differential polyteny and karyotype evolution in “Luzula”, a critical interpretation of morphological and cytophotometric data. Genet. Iberica 13, 1–22 (1961).Google Scholar
  40. Miller, O.: Fine structure of lampbrush chromosomes. Nat. Cancer Inst. Monogr. 18, 79–99 (1965).Google Scholar
  41. Mirsky, A. E., Ris, H.: Variable and constant components of chromosomes. Nature (Lond.) 163, 666–667 (1949).Google Scholar
  42. —: The deoxyribonucleic acid content of animal cells and its evolutionary significance. J. gen. Physiol. 34, 451–462 (1951).Google Scholar
  43. Morescalchi, A.: Il corredo chromosomico di Hyla arborea arborea (L.) e di Hyla regilla Baird and Girard: Il problema del cromosomi sessuali e 1'evoluzione del cariotipo di Hyla. Caryologia (Firenze) 18, 193–206 (1965a).Google Scholar
  44. —: Osservazioni sulla cariologia di Bombina. Boll. Zool. 32, 207–218 (1965b).Google Scholar
  45. Naora, H., Naora, H., Mirsky, A. E., Allfrey, V. G.: Magnesium and calcium in isolated cell nuclei. J. gen. Physiol. 44, 713–742 (1961).Google Scholar
  46. Ohno, S.: Sex chromosomes and sex-linked genes. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  47. Peacock, W. J.: Chromosome duplication and structure as determined by autoradiography. Proc. nat. Acad. Sci. (Wash.) 49, 793–801 (1963).Google Scholar
  48. Rieger, R., Michaelis, A.: Chromosomenmutationen. In: Genetik; Grundlagen, Ergebnisse und Probleme in Einzeldarstellungen (Hrsg. H. Stubbe), Beitr. 6, Jena: VEB Fischer 1967.Google Scholar
  49. Ris, H.: Chromosome structure. In: W. D. McElroy and B. Glass (eds.), Chemical basis of heredity, p. 23–62. Baltimore: Johns Hopkins Press 1957.Google Scholar
  50. —: Ultrastructure and molecular organization of genetic systems. Canad. J. Genet. Cytol. 3, 95–120 (1961).Google Scholar
  51. Robinson, E. S., Stephenson, E. M.: A karyological study of cultured cells of Limnodynastes peroni (Anura: Leptodactylidae). Cytologia (Tokyo) 32, 200–207 (1967).Google Scholar
  52. Rothfels, K., Heimburger, M.: Chromosome size and DNA values in sundews (Droseraceae). Chromosoma (Berl.) 25, 96–103 (1968).Google Scholar
  53. —, Sexsmith, E., Heimburger, M., Krause, O.: Chromosome size and DNA content of species of Anemone L. and related genera (Ranunculaceae). Chromosoma (Berl.) 20, 54–74 (1967).Google Scholar
  54. Saez, F. A., Brum, N.: Chromosomes of South American amphibians. Nature (Lond.) 185, 945 (1960).Google Scholar
  55. —: Cytogenetics of south American amphibians. Genetics today 1, 141 (1963).Google Scholar
  56. Sapp, W.: The effects of enzymes on the fine structure of lampbrush chromosomes. J. Cell Biol. 31, 159A (1966).Google Scholar
  57. Schrader, F., Hughes-Schrader, S.: Polyploidy and fragmentation in the chromosomal evolution of various species of Thyanta (Hemiptera). Chromosoma (Berl.) 7, 469–496 (1956).Google Scholar
  58. Sparvoli, E., Gay, H., Kaufmann, B. P.: Number and pattern of association of chromonemata in the chromosomes of Tradescantia. Chromosoma (Berl.) 16, 415–435 (1965).Google Scholar
  59. Steffensen, D.: A comparative view of the chromosome. Brookhaven Symp. Biol. 12, 103–124 (1959).Google Scholar
  60. —: Chromosome structure with special reference to the role of metal ions. Int. Rev. Cytol. 12, 163–197 (1961).Google Scholar
  61. Taylor, J. H.: Sister chromatid exchange in tritium labelled chromosomes. Genetics 43, 515–529 (1958).Google Scholar
  62. —: The duplication of chromosomes. In: Probleme der biologischen Reduplikation, S. 7–28. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  63. Trosko, J. E., Wolff, S.: Strandedness of Vicia faba chromosomes as revealed by enzyme digestion studies. J. Cell Biol. 26, 125–135 (1965).Google Scholar
  64. Uhl, C. H.: Chromosome structure and crossing over. Genetics 51, 191–207 (1965).Google Scholar
  65. Ullerich, F.-H.: Unterschiede im DNS-Gehalt der Genome von Bufo bufo und Bufo viridis. Z. Naturforsch. 20b, 720–722 (1965).Google Scholar
  66. —: Karyotyp und DNS-Gehalt von Bufo bufo, B. viridis, B. bufo X B. viridis und B. calamita (Amphibia, Anura). Chromosoma (Berl.) 18, 316–342 (1966).Google Scholar
  67. —: Weitere Untersuchungen über Chromosomenverhältnisse und DNS-Gehalt bei Anuren (Amphibia). Chromosoma (Berl.) 21, 345–368 (1967).Google Scholar
  68. Whitehouse, H. L. K.: A cycloid model for the chromosome. J. Cell Sci. 2, 9–22 (1967).Google Scholar
  69. Wickbom, T.: Cytological studies on Dipnoi, Urodela, Anura, and Emys. Hereditas (Lund) 31, 241–346 (1945).Google Scholar
  70. —: Further cytological studies on Anura and Urodela. Hereditas (Lund) 35, 33–48 (1949).Google Scholar
  71. Wolfe, S. L., Martin, P. G.: The ultrastructure and strandedness of chromosomes from two species of Vicia. Exp. Cell Res. 50, 140–150 (1968).Google Scholar
  72. Wolff, S.: Strandedness of chromosomes. Int. Rev. Cytol. 25, 279–296 (1969).Google Scholar
  73. Yosida, T. H.: Sex chromosomes of the tree frog, Hyla arborea japonica. J. Fac. Sci. (Ser. VI), Hokkaido Univ. 13, 352–358 (1957).Google Scholar
  74. Ziemann, Ch.: Inwieweit lassen sich die ontogenetisch und phylogenetisch bedingten Kern- und Zellgrößenunterschiede bei Amphibien einheitlich deuten? Wiss. Z. Univ. Halle, math.-nat. R. 8, 799–822 (1959).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Fritz-Helmut Ullerich
    • 1
  1. 1.Zoologisches Institut I der Universität WürzburgGermany

Personalised recommendations