Behavioral Ecology and Sociobiology

, Volume 5, Issue 3, pp 301–322 | Cite as

Orientation by jumping spiders of the genus Phidippus (Araneae: Salticidae) during the pursuit of prey

  • David Edwin Hill
Article

Summary

  1. 1.

    Jumping spiders of the genus Phidippus tend to occupy waiting positions on plants during the day. From such reconnaissance positions, the spiders often utilize an indirect route of access (detour) to attain a position from which sighted prey (the primary objective of pursuit) can be captured.

     
  2. 2.

    Selection of an appropriate route of access is based upon movement toward a visually determined secondary objective (part of a plant) which may provide access to the prey position (Fig. 2, Table 1).

     
  3. 3.

    During pursuit, the spider retains a memory of the relative position of the prey at all times. This memory of prey position is frequently expressed in the form of a reorientation turn to face the expected position of the prey (Fig. 1). Each reorientation can be considered to initiate a new segment of the pursuit.

     
  4. 4.

    Phidippus employ the immediate direction (or route) of pursuit as a reference direction, for the determination of prey position (Figs. 3 and 4). The spider compensates for its own movement in determining the direction of the prey from a new position (Fig. 5).

     
  5. 5.

    The spider retains a memory of the prey direction with reference to gravity (Fig. 6); this memory of the inclination of prey direction can take precedence over conflicting information based upon the use of the route as a reference direction (Figs. 7 and 8).

     
  6. 6.

    Visual cues provided by both the background and the immediate plant configuration can be used by the spider to determine a (radial) direction in the plane perpendicular to the route of pursuit (Fig. 9, Table 2).

     
  7. 7.

    The jumping spider must employ at least two independent reference systems (route direction, gravity, visual cues) in concert to determine the position of the prey in space (Fig. 10 and Table 3, Fig. 11).

     
  8. 8.

    Apart from the context of predatory pursuit, the indirect pursuit of visually determined objectives is a general feature of the movement of salticid spiders upon vegetation.

     

References

  1. Akre, R.D.: Correcting behavior by insects on vertical and horizontal mazes. J. Kans. Entomol. Soc. 37, 169–186 (1964)Google Scholar
  2. Bartels, M.: Sinnesphysiologische und psychologische Untersuchungen an der Trichterspinne Agelena labyrinthica (Cl.). Z. Vergl. Physiol. 10, 527–593 (1929)Google Scholar
  3. Bartels, M., Baltzer, F.: Über Orientierung und Gedächtnis der Netzspinne Agelena labyrinthica. Rev. Suisse Zool. 35, 247–258 (1928)Google Scholar
  4. Barth, F.G.: Sensory information from strains in the exoskeleton. In: The insect integument. Hepburn, H.R. (ed.), pp. 445–473. Amsterdam: Elsevier 1976Google Scholar
  5. Burger, M.L.: Zum Mechanismus der Gegenwendung nach mechanisch aufgezwungener Richtungsänderung bei Schizophyllum sabulosum (Julidae, Diplopoda). Z. Vergl. Physiol. 71, 219–254 (1971)Google Scholar
  6. Crome, W.: Arachnida. In: Exkursionsfauna, Wirbellose I. Stresemann, E. (ed.), pp. 289–361. Berlin: Volk und Wissen 1957Google Scholar
  7. Curio, E.: The ethology of predation, pp. 1–250. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  8. Dornfeldt, K.: The role of the principal and accessory eyes in the photomenotactic orientation of the funnel spider Agelena labyrinthica (Cl.). Z. Tierpsychol. 38, 113–153 (1975a)Google Scholar
  9. Dornfeldt, K.: The control system of homing in the spider Agelena labyrinthica (Cl.). Z. Tierpsychol. 38, 267–293 (1975b)Google Scholar
  10. Drees, O.: Untersuchungen über die angeborenen Verhaltenweisen bei Springspinnen (Salticidae). Z. Tierpsychol. 9, 169–207 (1952)Google Scholar
  11. Duelli, P.: Movement detection in the posterolateral eyes of jumping spiders (Evarcha arcuata, Salticidae). J. Comp. Physiol. 124, 15–26 (1978)Google Scholar
  12. Forster, L.M.: A qualitative analysis of hunting behavior in jumping spiders (Araneae: Salticidae). N.Z. J. Zool. 4, 51–62 (1977)Google Scholar
  13. Frisch, K. von: The dance language and orientation of bees, pp. 1–566. Cambridge, Mass.: Belknap Press 1967Google Scholar
  14. Gardner, B.T.: Hunger and sequential responses in the hunting behavior of salticid spiders. J. Comp. Physiol. Psychol. 58, 167–173 (1964)Google Scholar
  15. Gardner, B.T.: Observations on three species of Phidippus jumping spiders (Araneae: Salticidae). Psyche 72, 133–147 (1965)Google Scholar
  16. Görner, P.: Die optische und kinästhetische Orientierung der Trichterspinne Agelena labyrinthica. Z. Vergl. Physiol. 41, 111–153 (1958)Google Scholar
  17. Görner, P.: Die Orientierung der Trichterspinne nach polarisiertem Licht. Z. Vergl. Physiol. 45, 307–314 (1962)Google Scholar
  18. Görner, P.: Über die Koppelung der optischen und kinästhetischen Orientierung bei der Trichterspinne Agelena labyrinthica (Clerck) und Agelena gracilens C.L.. Koch. Z. Vergl. Physiol. 53, 253–276 (1966)Google Scholar
  19. Heil, K.H.: Beiträge zur Physiologie und Psychologie der Springspinnen. Z. Vergl. Physiol. 23, 1–25 (1936)Google Scholar
  20. Henton, W.W., Crawford, F.T.: The discrimination of polarized light by the tarantula. Z. Vergl. Physiol. 52, 26–32 (1966)Google Scholar
  21. Holzapfel, M.: Die nicht-optische Orientierung der Trichterspinne Agelena labyrinthica (Cl.). Z. Vergl. Physiol. 20, 55–116 (1933)Google Scholar
  22. Homann, H.: Beiträge zur Physiologie der Spinnenaugen. II. Das Sehvermögen der Salticiden. Z. Vergl. Physiol. 7, 229–268 (1928)Google Scholar
  23. Kästner, A.: Reaktion der Hüpfspinnen (Salticidae) auf unbewegte farblose und farbige Gesichtsreize. Zool. Beitr. 1, 12–50 (1950)Google Scholar
  24. Land, M.F.: Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J. Exp. Biol. 51, 443–470 (1969a)Google Scholar
  25. Land, M.F.: Orientation by jumping spiders in the absence of visual feedback. J. Exp. Biol. 54, 119–139 (1971)Google Scholar
  26. Land, M.F.: A comparison of the visual behavior of a predatory arthropod with that of a mammal. In: The neurosciences: Third study program. Schmitt, F.O., Worden, F.G. (eds.), pp. 411–418. Cambridge, Mass.: MIT 1974Google Scholar
  27. LeGuelte, L.: Learning in spiders. Am. Zool. 9, 145–152 (1969)Google Scholar
  28. Mendenhall, W., Scheaffer, R.L.: Mathematical statistics with applications. pp. 1–561. North Scituate, Mass.: Duxbury 1973Google Scholar
  29. Mittelstaedt-Burger, M.L.: Idiothetic course control and visual orientation. In: Information processing in the visual systems of arthropods. Wehner, R. (ed.), pp. 275–279. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  30. Moller, P.: Die systematischen Abweichungen bei der optischen Richtungsorientierung der Trichterspinne Agelena Labyrinthica. Z. Vergl. Physiol. 66, 78–106 (1970)Google Scholar
  31. Papi, F.: Astronomische Orientierung bei der Wolfspinne Arctosa perita (Latr.). Z. Vergl. Physiol. 37, 230–233 (1955)Google Scholar
  32. Papi, F.: Sull' orientamento astronomico in specie del gen. Arctosa (Araneae, Lycosidae). Z. Vergl. Physiol. 41, 481–489 (1959)Google Scholar
  33. Peters, H.: Experimente über die Orientierung der Kreuzspinne Epeira diademata Cl. im Netz. Zool. Jahrb. Abt. Allg. Zool. Physiol. Tiere 51, 239–288 (1932)Google Scholar
  34. Robinson, M.H.: Predatory behavior of Argiope aurantia. Am. Zool. 9, 161–173 (1969)Google Scholar
  35. Runyon, R.P., Haber, A.: Fundamentals of behavioral statistics, pp. 1–351. Reading, Mass.: Addison-Wesley 1971Google Scholar
  36. Schäger, M.W.: Gegendrehung und Winkelsinn in der Orientierung von Lithobius forficatus L. Teil I. Nachweis der Winkelsinne, Charakterisierung der Orientierungsleistung. Behaviour 55, 15–41 (1975a)Google Scholar
  37. Schäfer, M.W.: Gegendrehung und Winkelsinn in der Orientierung von Lithobius forficatus L. Teil II. Die äußeren und inneren Bezugspunkte. Behaviour 55, 42–72 (1975b)Google Scholar
  38. Wilson, D.H., Hoy, R.R.: Optomotor reaction, locomotory bias and reactive inhibition in the milkweed bug Oncopeltus and the beetle Zophobas. Z. Vergl. Physiol. 58, 136–152 (1968)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • David Edwin Hill
    • 1
  1. 1.Section of Neurobiology and Behavior, Langmuir LaboratoryCornell UniversityIthacaUSA

Personalised recommendations