Current Microbiology

, Volume 30, Issue 4, pp 251–253 | Cite as

Method for determination of chemoattraction in Tetrahymena pyriformis

  • L. Köhidai


Earlier works presented a variety of techniques for detection of chemoattractants in ciliates. The present agar layer model and the used double-P cutter give an easy, reproducible way of quantitative evaluation of positive chemotaxis. Beside the two-channel chamber, the multichannel one seems to be also useful in characterization of different taxons or different chemoattractants.


Agar Quantitative Evaluation Layer Model Agar Layer Present Agar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Almagor M, Ron A, Bar-Tana J (1981) Chemotaxis in Tetrahymena thermophila. Cell Motil 1:261–268Google Scholar
  2. 2.
    Bonner JT, Kelso AP, Gillmor RG (1966) A new approach to the problem of aggregation in the cellular slime molds. Biol Bull 130:28–42Google Scholar
  3. 3.
    Gerisch G (1982) Chemotaxis in Dictyostelium. Annu Rev Physiol 44:535–552Google Scholar
  4. 4.
    Köhidai L, Karsa J, Csaba G (1994) Effects of hormones on the chemotaxis in Tetrahymena-investigations on receptor memory. Microbios 77:75–85Google Scholar
  5. 5.
    Köhidai L, Karsa J, Csaba G (1994) Effects of atrial natriuretic factor on the unicellular model Tetrahymena pyriformis. Microbios, in pressGoogle Scholar
  6. 6.
    Kovács P, Csaba G (1990) Effect of insulin on Blepharisma undulans (Stein) at primary exposure and reexposure. Acta Protozool 29:131–139Google Scholar
  7. 7.
    Kovács P, Csaba G (1994) Study on pheromone on insulin induced chemotaxis in Tetrahymena. Microbios, in pressGoogle Scholar
  8. 8.
    Leick V (1988) Gliding Tetrahymena thermophila: oriented chemochinesis in a ciliate. Eur J Protistol 23:354–360Google Scholar
  9. 9.
    Leick V, Helle J (1983) A quantitative assay for ciliate chemotaxis. Anal Biochem 135:466–469Google Scholar
  10. 10.
    Leick V, Hellung-Larsen P (1992) Chemosensory behaviour of Tetrahymena. Bioassays 14:61–66Google Scholar
  11. 11.
    O Neill JB, Pert CB, Ruff MR, Smith CC, Higgins WJ, Zipser B (1988) Identification and characterization of the opiate receptor in the ciliated protozoan, Tetrahymena. Brain Res 450:303–315Google Scholar
  12. 12.
    Taneda K (1988) Geotactic behavior in Paramecium caudatum I. Geotaxis assay of individual specimen. Zool Sci 5:781–788Google Scholar
  13. 13.
    Ueda T, Kobatake Y (1977) Hydrophobicity of biosurfaces as shown by chemoreceptive thresholds in Tetrahymena, Physarum and Nitella. J Membrane Biol 34:351–368Google Scholar
  14. 14.
    Van Houten J, Preston RR (1987) Chemoreception: paramecium as a receptor cell. Adv Exp Med Biol 221:375–384Google Scholar
  15. 15.
    Van Houten J, Hansma H, Kung C (1975) Two quantitative assays for chemotaxis in Paramecium. J Comp Physiol 104:211–223Google Scholar
  16. 16.
    Van Houten J, Hauser DCR, Levandowsky M (1981) Chemosensory behaviour in protozoa. In: Levandowsky M, Hutner SH (eds), Biochemistry and physiology of protozoa. New York: Academic Press, Vol. 4, pp 67–124Google Scholar
  17. 17.
    Van Houten J, Martel E, Kasch T (1982) Kinetic analysis of chemotaxis of Paramecium. J Protozool 29:226–230Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • L. Köhidai
    • 1
  1. 1.Department of BiologySemmelweis University of MedicineBudapestHungary

Personalised recommendations