, Volume 75, Issue 3, pp 293–308 | Cite as

An analysis of spindle ultrastructure during prometaphase and metaphase of micronuclear division in Tetrahymena

  • James R. LaFountainJr.
  • Lloyd A. Davidson


Mitotic micronuclei were isolated from Tetrahymena thermophila in a medium containing hexylene glycol and their ultrastructure was analyzed using thin section techniques. The two stages selected for analysis were early prometaphase and metaphase. A comparison of data from these two stages revealed several differences in nuclear morphology. Metaphase nuclei were longer, they contained more microtubules, and the distribution of microtubules at metaphase was different from that at early prometaphase. Increases in microtubule number and length were clearly evident in peripheral sheath microtubules, which are a unique class of microtubules that can be distinguished from other classes on the basis of their close association to the nuclear membrane. Growth of peripheral sheath microtubules is thought to be significant because it could be the mechanical basis of nuclear elongation. Crossbridges were observed throughout the spindle between all classes of microtubules, but the exact function of these elements remains to be determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bajer, A., Molé-Bajer, J.: Formation of spindle fibers, kinetochore orientation, and behavior of the nuclear envelope during mitosis in endosperm. Fine structure and in vitro studies. Chromosoma (Berl.) 27, 448–484 (1969)Google Scholar
  2. Davidson, L., LaFountain, J.R., Jr.: Mitosis and early meiosis in Tetrahymena pyriformis and the evolution of mitosis in the phylum Ciliophora. BioSystems 7, 326–336 (1978)Google Scholar
  3. Dietz, R.: Die Spermatocytenteilungen der Tipuliden. II. Graphische Analyse der Chromosomenbewegung während der Prometaphase I im Leben. Chromosoma (Berl.) 8, 183–211 (1956)Google Scholar
  4. Fuge, H.: Ultrastructure of the mitotic spindle. Int. Rev. Cytol. Suppl. 6, 1–58 (1977)Google Scholar
  5. Gavin, R.H.: The effects of heat and cold on cellular development in synchronized Tetrahymena pyriformis WH-6. J. Protozool. 12, 307–318 (1965)Google Scholar
  6. Gould, R.R., Borisy, G.G.: The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J. Cell Biol. 73. 601–615 (1977)Google Scholar
  7. Gould, R.R., Borisy, G.G.: Quantitative initiation of microtubule assembly by chromosomes from Chinese hamster ovary cells. Exp. Cell Res. 113. 369–374 (1978)Google Scholar
  8. Henderson, S.A., Koch, C.A.: Co-orientation stability by physical tension: A demonstration with experimentally interlocked bivalents. Chromosoma (Berl.) 29, 207–216 (1970)Google Scholar
  9. Hepler, P.K., McIntosh, J.R., Landis, S.C.: Intermicrotubule bridges in mitotic spindle apparatus. J. Cell Biol. 45, 438–444 (1970)Google Scholar
  10. Kane, R.E.: The mitotic apparatus. Physical-chemical factors controlling stability. J. Cell Biol. 25, 137–144 (1965)Google Scholar
  11. Kirschner, M.W.: Microtubule assembly and nucleation. Int. Rev. Cytol. 54, 1–71 (1978)Google Scholar
  12. LaFountain, J.R., Jr.: Spindle shape changes as an indicator of force production in crane-fly spermatocytes. J. Cell Sci. 10, 79–93 (1972)Google Scholar
  13. LaFountain, J.R., Jr.: Birefringence and fine structure of spindles in spermatocytes of Nephrotoma suturalis at metaphase of first meiotic division. J. Ultrastruct. Res. 46, 268–278 (1974)Google Scholar
  14. Luykx, P.: Cellular mechanisms of chromosome distribution. Int. Rev. Cytol., Suppl. 2, (1970)Google Scholar
  15. McDonald, K., Pickett-Heaps, J.D., McIntosh, J.R., Tippit, D.H.: On the mechanism of anaphase spindle elongation in Diatoma vulgare. J. Cell Biol. 74, 377–388 (1977)Google Scholar
  16. McIntosh, J.R.: Bridges between microtubules. J. Cell Biol. 61, 661–187 (1974)Google Scholar
  17. Mollenhauer, H.H.: Plastic embedding for use in electron microscopy. Stain Technol. 39, 111–114 (1964)Google Scholar
  18. Nicklas, R.B.: Chromosome distribution: Experiments on cell hybrids and in vitro. Phil. Trans. roy. Soc. Lond. B 277, 267–276 (1977)Google Scholar
  19. Nicklas, R.B., Brinkley, B.R., Pepper, D.A., Kubai, D.F., Rickards, G.K.: Electron microscopy of spermatocytes previously studied in life: Methods and some observations on manipulated chromosomes. J. Cell Sci. 35, 87–104 (1979)Google Scholar
  20. Paweletz, N.: Elektronenmikroskopische Untersuchungen an frühen Stadien der Mitose bei HeLa-Zellen. Cytobiologie 9, 368–390 (1974)Google Scholar
  21. Pickett-Heaps, J.D.: The evolution of the mitotic apparatus: An attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios. 1, 257 (1969)Google Scholar
  22. Pickett-Heaps, J.D.: The evolution of mitosis and the eukaryotic condition. BioSystems 6, 37–48 (1974)Google Scholar
  23. Pickett-Heaps, J.D., Tippit, D.H.: The diatom spindle in perspective. Cell 14, 455–467 (1978)Google Scholar
  24. Roos, U.-P.: Light and electron microscopy of rat kangaroo cells in mitosis. III. Patterns of chromosome behavior during prometaphase. Chromosoma (Berl.) 54, 363–385 (1976)Google Scholar
  25. Sakai, A.: Electron microscopy of dividing cells I. Microtubules and the formation of the spindle in spore mother cells of Equisetum arvense. Cytologia (Tokyo) 33, 318–330 (1968)Google Scholar
  26. Sakai, A.: Electron microscopy of dividing cells II. Microtubules and formation of the spindle in root tips of higher plants. Cytologia (Tokyo) 34, 57–70 (1969a)Google Scholar
  27. Sakai, A.: Electron microscopy of dividing cells III. Mass of microtubules and formation of spindle in pollen mother cells of Trillium kamtschaticum. Cytologia (Tokyo) 34, 593–604 (1969b)Google Scholar
  28. Summers, K.E., Gibbons, I.R.: Adenosine triphosphase-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. nat. Acad. Sci. (Wash.) 68, 3092–3096 (1971)Google Scholar
  29. Telzer, B.R., Moses, M.J., Rosenbaum, J.L.: Assembly of microtubules onto kinetochores of isolated mitotic chromosomes of HeLa cells. Proc. nat. Acad. Sci. (Wash.) 72, 4023–4027 (1975)Google Scholar
  30. Tilney, L.G.: Origin and continuity of microtubules. IN. Origin and continuity of cell organelles. (J. Reinert and H. Urspring, eds.), pp. 222–260. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  31. Tippit, D.H., Schulz, D., Pickett-Heaps, J.D.: Analysis of the distribution of spindle microtubules in the diatom, Fragilaria. J. Cell Biol. 79, 737–763 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • James R. LaFountainJr.
    • 1
  • Lloyd A. Davidson
    • 1
    • 2
  1. 1.Division of Cell and Molecular BiologyState University of New York at BuffaloAmherstUSA
  2. 2.Department of BiologyUniversity of Notre DameNotre DameUSA

Personalised recommendations