, Volume 75, Issue 3, pp 259–292 | Cite as

Recombination nodules and synaptonemal complex in recombination-defective females of Drosophila melanogaster

  • Adelaide T. C. Carpenter


The cytological effects of mutant alleles of the mei-9, mei-218, and mei-41 loci during prophase I have been examined by electron microscopy. None of these mutants affect synaptonemal complex structure, continuity, or temporal behavior. Both the precondition-defective mutants mei-218 and mei-41 affect both number and morphology of spherical recombination nodules and apparently affect at least the numbers of ellipsoidal recombination nodules, whereas in the exchange-defective mutant mei-9 the numbers and morphologies of both ellipsoidal and spherical recombination nodules are normal. The parallel effects of mei-218 and mei-41 on meiotic recombination and on recombination nodules indicate that spherical recombination nodules at least mark the site of exchange events; the effects of these mutants on nodule morphology suggest that the nodule performs an active role in the recombination process. The nodule phenotype of mei-9 indicates that spherical nodules are present, and presumably functioning, well before the concluding stages of the recombination event. The parallel effects of all 3 mutants on ellipsoidal and spherical nodules indicate that these are indeed related structures but does not ellucidate the nature of the relationship. It is suggested that all aspects of meiotic recombination are under the aegis of recombination nodules.


Developmental Biology Active Role Recombination Event Mutant Allele Exchange Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, B.S., Carpenter, A.T.C.: Genetic analysis of sex chromosomal meiotic mutants in Drosophila melanogaster. Genetics 71, 255–286 (1972)Google Scholar
  2. Baker, B.S., Hall, J.C.: Meiotic mutants: Genetic control of meiotic recombination and chromosome segregation. In: The genetics and biology of Drosophila, Vol. 1 a (M. Ashburner and E. Novitski, eds.), pp. 351–434. London, New York, San Francisco: Academic Press 1976Google Scholar
  3. Baker, B.S., Smith, D.A.: The effects of mutagen-sensitive mutants of Drosophila melanogaster in non-mutagenized cells. Genetics 92 (3) (in press, 1979)Google Scholar
  4. Baker, B.S., Carpenter, A.T.C., Esposito, M.S., Esposito, R.E., Sandler, L.: The genetic control of meiosis. Ann. Rev. Genet. 10, 53–134 (1976a)Google Scholar
  5. Baker, B.S., Boyd, J.B., Carpenter, A.T.C., Green, M.M., Nguyen, T.D., Ripoll, P., Smith, P.D.: Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 73, 4140–4144 (1976b)Google Scholar
  6. Baker, B.S., Carpenter, A.T.C., Ripoll, P.: The utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaster. Genetics 90, 531–578 (1978)Google Scholar
  7. Bogdanov, Yu. F.: Formation of cytoplasmic synaptonemal-like polycomplexes at leptotene and normal synaptonemal complexes at zygotene in Ascaris suum male meiosis. Chromosoma (Berl.) 61, 1–21 (1977)Google Scholar
  8. Boyd, J.B., Golino, M.D., Nguyen, T.D., Green, M.M.: Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics 84, 485–506 (1976 a)Google Scholar
  9. Boyd, J.B., Golino, M.D., Setlow, R.B.: The mei-9a mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair. Genetics 84, 527–544 (1976 b)Google Scholar
  10. Bridges, C.B.: A linkage variation in Drosophila. J. exp. Zool. 19, 1–21 (1915)Google Scholar
  11. Byers, B., Goetsch, L.: Electron microscopic observations on the meiotic karyotype of diploid and tetraploid Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 72, 5056–5060 (1975)Google Scholar
  12. Carmi, P., Holm, P.B., Koltin, Y., Rasmussen, S.W., Sage, J., Zickler, D.: The pachytene karyotype of Schizophyllum commune analyzed by three dimensional reconstruction of synaptonemal complexes. Carlsberg Res. Commun. 43, 117–132 (1978)Google Scholar
  13. Carpenter, A.T.C.: Electron microscopy of meiosis in Drosophila melanogaster females I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type. Chromosoma (Berl.) 51, 157–182 (1975a)Google Scholar
  14. Carpenter, A.T.C.: Electron microscopy of meiosis in Drosophila melanogaster females II. The recombination nodule — a recombination-associated structure at pachytene? Proc. nat. Acad. Sci. (Wash.) 72, 3186–3189 (1975b)Google Scholar
  15. Carpenter, A.T.C.: Synaptonemal complex and recombination nodules in wild-type Drosophila melanogaster females. Genetics 92, 511–541 (1979)Google Scholar
  16. Carpenter, A.T.C., Baker, B.S.: Genic control of meiosis and some observations on the synaptonemal complex in Drosophila melanogaster. In: Mechanisms in recombination (R.F. Grell, ed.), pp. 365–375. New York: Plenum Publishing Corporation 1974Google Scholar
  17. Carpenter, A.T.C., Sandler, L.: On recombination-defective meiotic mutants in Drosophila melanogaster. Genetics 76, 453–475 (1974)Google Scholar
  18. Debus, B.: “Nodules” in the achiasmatic meiosis of Bithynia (Mollusca, Prosobranchia). Chromosoma (Berl.) 69, 81–92 (1978)Google Scholar
  19. Frasca, J.M., Parks, V.R.: A routine technique for double-staining ultrathin sections using uranyl and lead salts. J. Cell Biol. 25, 157–161 (1965)Google Scholar
  20. Gassner, G.: Synaptinemal complexes in the achiasmatic spermatogenesis of Bolbe nigra Giglio-Tos (Mantoidea). Chromosoma (Berl.) 26, 22–34 (1969)Google Scholar
  21. Gatti, M.: Genetic control of chromosome breakage and rejoining in Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 76, 1377–1381 (1979)Google Scholar
  22. Gillies, C.B.: Synaptonemal complex and chromosome structure. Ann. Rev. Genet. 9, 91–109 (1975)Google Scholar
  23. Gillies, C.B.: The relationship between synaptonemal complexes, recombination nodules and crossing over in Neurospora crassa bivalents and translocation quadrivalents. Genetics 91, 1–17 (1979)Google Scholar
  24. Goldstein, P., Triantaphyllou, A.C.: Occurrence of synaptonemal complexes and recombination nodules in a meiotic race of Meloidogyne hapla and their absence in a mitotic race. Chromosoma (Berl.) 68, 91–100 (1978)Google Scholar
  25. Holliday, R.: Recombination and meiosis. Phil. Trans. roy. Soc. Lond. B. 277, 359–370 (1977)Google Scholar
  26. Holm, P.B.: Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lilium longiflorum (Thunb.). Carlsberg Res. Commun. 42, 103–151 (1977)Google Scholar
  27. King, R.C.: Ovarian development in Drosophila melanogaster. New York: Academic Press, 1970Google Scholar
  28. Kitani, Y.: Absence of interference in association with gene conversion in Sordaria fimicola, and presence of interference in association with ordinary recombination. Genetics 89, 467–497 (1978)Google Scholar
  29. Kundu, S.C., Bogdanov, Yu.F.: Ultrastructural studies of late meiotic prophase nuclei of spermatocytes in Ascaris suum. Chromosoma (Berl.) 70, 357–384 (1979)Google Scholar
  30. Lindsley, D.L., Grell, E.H.: Genetic variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ. 627, 1968Google Scholar
  31. Lindsley, D.L., Sandler, L.: The genetic analysis of meiosis in female Drosophila melanogaster. Phil. Trans. roy. Soc. Lond. B. 277, 295–312 (1977)Google Scholar
  32. Lindsley, D.L., Sandler, L., Nicoletti, B., Trippa, G.: Genetic control of recombination in Drosophila. In: Replication and recombination of genetic material (W.J. Peacock and R.D. Brock, eds.), pp. 253–276. Canberra: Australian Academy of Science 1968Google Scholar
  33. Lutken, T., Baker, B.S.: The effects of recombination-defective meiotic mutants in Drosophila melanogaster on gonial recombination in males. Mutation Res. 61, 221–227 (1979)Google Scholar
  34. Mahowald, A.P., Strassheim, J.M.: Intercellular migration of centrioles in the germarium of Drosophila melanogaster: An electron microscopic study. J. Cell Biol. 45, 306–320 (1970)Google Scholar
  35. Merriam, J.R.: FM7: first multiple seven. Drosophila Inf. Serv. 43, 64 (1968)Google Scholar
  36. Meselson, M.S., Radding, C.R.: A general model for genetic recombination. Proc. nat. Acad. Sci. (Wash.) 72, 358–361 (1975)Google Scholar
  37. Meyer, G.F.: A possible correlation between the submicroscopic structure of meiotic chromosomes and crossing over. Proc. 3rd. Europ. Reg. Conf. E.M., Prague B. pp. 461–462 (1964)Google Scholar
  38. Moens, P.B.: The structure and function of the synaptonemal complex in Lilium longiflorum sporocytes. Chromosoma (Berl.) 23, 418–451 (1968)Google Scholar
  39. Moens, P.B.: Lateral element cross connections of the synaptonemal complex and their relationship to chiasmata in rat spermatocytes. Canad. J. Genet. Cytol. 20, 567–579 (1978a)Google Scholar
  40. Moens, P.B.: Ultrastructural studies of chiasma distribution. Ann. Rev. Genet. 12, 433–450 (1978b)Google Scholar
  41. Moses, M.J.: Synaptinemal complex. Ann. Rev. Genet. 2, 363–412 (1968)Google Scholar
  42. Moses, M.J.: Structure and function of the synaptonemal complex. Genetics 61, Suppl. 41–52 (1969)Google Scholar
  43. Moses, M.J.: Microspreading and the synaptonemal complex in cytogenetic studies. Chromosomes today 6, 71–82 (1977a)Google Scholar
  44. Moses, M.J.: The synaptonemal complex and meiosis. Molecular human cytogenetics, ICN-UCLA Symp. VII (R.S. Sparkes, D. Comings and C.F. Fox, eds.), pp. 101–125. New York: Academic Press 1977bGoogle Scholar
  45. Rasmussen, S.W.: Ultrastructural studies of meiosis in males and females of the c(3)G17 mutant of Drosophila melanogaster Meigen. Compt. Rend. Trav. Lab. Carlsberg 40, 163–173 + 19 figs (1975)Google Scholar
  46. Rasmussen, S.W.: The meiotic prophase in Bombyx mori females analyzed by three-dimensional reconstructions of synaptonemal complexes. Chromosoma (Berl.) 54, 245–293 (1976)Google Scholar
  47. Rasmussen, S.W.: The transformation of the synaptonemal complex into the “elimination chromatin” in Bombyx mori oocytes. Chromosoma (Berl.) 60, 205–221 (1977)Google Scholar
  48. Rasmussen, S.W., Holm, P.B.: Human meiosis II. Chromosome pairing and recombination nodules in human sporocytes. Carlsberg Res. Commun. 43, 275–327 (1978)Google Scholar
  49. Reynolds, D.R.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  50. Rhoades, M.M.: Meiosis in maize. J. Heredity 41, 59–67 (1950)Google Scholar
  51. Sandler, L., Lindsley, D.L., Nicoletti, B., Trippa, G.: Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics 60, 525–558 (1968)Google Scholar
  52. Smith, P.A., King, R.C.: Genetic control of synaptonemal complexes in Drosophila melanogaster. Genetics 60, 335–351 (1968)Google Scholar
  53. Smith, P.D.: Mutagen sensitivity of Drosophila melanogaster. III. X-linked loci governing sensitivity to methyl methanesulfonate. Molec. gen. Genet. 149, 73–85 (1976)Google Scholar
  54. Storms, R., Hastings, P.J.: A fine structure analysis of meiotic pairing in Chlamydomonas reinhardi. Exp. Cell Res. 104, 39–46 (1977)Google Scholar
  55. Sturtevant, A.H., Beadle, G.W.: The relations of inversions in the X chromosome of Drosophila melanogaster to crossing-over and disjunction. Genetics 21, 554–604 (1936)Google Scholar
  56. Westergaard, M., Wettstein, D. von: The synaptinemal complex. Ann. Rev. Genet. 6, 71–110 (1972)Google Scholar
  57. Zickler, D.: Development of the synaptonemal complex and the “recombination nodules” during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora Auersw. Chromosoma (Berl.) 61, 289–316 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Adelaide T. C. Carpenter
    • 1
  1. 1.Department of Biology, B-022University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations