Chromosoma

, Volume 54, Issue 3, pp 201–219

Chromosome homology and evolution of emydid turtles

  • John W. Bickham
  • Robert J. Baker
Article

Abstract

G-, C-, Q-banding and standard karyotypic analyses were used to study the chromosomal relationships of emydid turtles. Ten species of emydids were used (5 batagurines and 5 emydines) which samples all of the karyotypic variation known for the Emydidae. Data from a testudinid and a chelydrid are compared to the emydids. The karyotype of Mauremys and Sacalia is considered representative of the primitive karyotype for this group because of its widespread occurrence in the morphologically primitive Batagurinae and its similarity to that of some testudinids. The emydine karyotype is believed to have evolved from the primitive batagurine karyotype by the deletion of a heterochromatic macrochromosome. Siebenrockiella and Rhinoclemys are karyotypically derived batagurines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickham, J.W.: A cytosystematic study of turtles in the genera Clemmys, Mauremys and Sacalia. Herpetologica 31, 198–204 (1975)Google Scholar
  2. Bickham, J. W.: A meiotic analysis of 4 species of turtles. Genetica (den Haag) (in press, 1976)Google Scholar
  3. Bickham, J. W., Baker, R. J.: A karyological study of some neotropical turtles. Copeia (Wash.) (in press, 1976)Google Scholar
  4. Bradshaw, W.N., Hsu, T.C.: Chromosomes of Peromyscus (Rodentia, Cricetidae) III. Polymorphism in Peromyscus maniculatus. Cytogenetics 11, 436–451 (1972)Google Scholar
  5. Caspersson, T., Zech, L., Modest, E.J., Foley, G.E., Wagh, U., Simonsson, E.: Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exp. Cell Res. 58, 128–140 (1969)Google Scholar
  6. Fredga, K., Mandahl, N.: Autosomal heterochromatin in some carnivores. Nobel Symp. 23, 104–117 (1973)Google Scholar
  7. Grouchey, J. de, Turleau, C., Roubin, M., Colin, F.C.: Chromosomal evolution of man and the primates (Pan troglodytes, Gorilla gorilla, Pongo pygmaeus). Nobel Symp. 23, 124–131 (1973)Google Scholar
  8. Hay, O.P.: The fossil turtles of North America. Carnegie Inst. Wash. Publ. 75, 1–568 (1908)Google Scholar
  9. Levan, A., Fredga, K., Sandberg, A.A.: Nomenclature for centromeric position in chromosomes. Hereditas (Lond.) 52, 201–220 (1964)Google Scholar
  10. Mascarello, J.T., Stock, A.D., Pathak, S.: Conservatism in the arrangement of genetic material in rodents. J. Mammal. 55, 695–704 (1974)Google Scholar
  11. McDowell, S.B.: Partition of the genus Clemmys and related problems in the taxonomy of the aquatic Testudinidae. Proc. Zool. Soc. London 143, 239–279 (1964)Google Scholar
  12. Moorhead, P.S., Nowell, P.G., Mellman, W.J., Batipps, D.M., Hungerford, D.A.: Chromosome preparations of leukocytes cultured from human peripheral blood. Exp. Cell Res. 20, 613–616 (1960)Google Scholar
  13. Pathak, S., Hsu, T.C., Arrighi, F.E.: Chromosomes of Peromyscus (Rodentia, Cricetidae). IV. The role of heterochromatin in karyotypic evolution. Cytogenet. Cell Genet. 12, 315–326 (1973a)Google Scholar
  14. Pathak, S., Hsu, T.C., Shirley, L.: Chromosome homology in the climbing rats, genus Tylomys (Rodentia: Cricetidae). Chromosoma (Berl.) 42, 215–228 (1973b)Google Scholar
  15. Patton, J.L.: Chromosome studies of certain pocket mice, genus Perognathus. J. Mammal. 48, 27–37 (1967)Google Scholar
  16. Pearson, P.: The uniqueness of the human karyotype. Nobel Symp. 23, 145–151 (1973)Google Scholar
  17. Sampaio, M.M., Barros, R.M., Ayres, M., Cunha, O.R.: A karyological study of two species of tortoises from the Amazon region of Brazil. Cytologia (Tokyo) 36, 199–204 (1971)Google Scholar
  18. Seabright, M.: A rapid banding technique for human chromosomes. Lancet 1971 II, 971–972Google Scholar
  19. Stock, A.D.: Karyological relationships in turtles (Reptilia: Chelonia). Canad. J. Genet. Cytol. 14, 859–868 (1972)Google Scholar
  20. Stock, A.D., Arrighi, F.E., Stefos, K.: Chromosome homology in birds: banding patterns of the chromosomes of the domestic chicken, ring-necked dove, and domestic pigeon. Cytogenet. Cell Genet. 13, 410–418 (1974)Google Scholar
  21. Stock, A.D., Mengden, G.A.: Chromosome banding pattern conservatism in birds and nonhomology of chromosome banding patterns between birds, turtles, snakes and amphibians. Chromosoma (Berl.) 50, 69–77 (1975)Google Scholar
  22. Takagi, N., Sasaki, M.: A phylogenetic study of bird karyotypes. Chromosoma (Berl.) 46, 91–120 (1974)Google Scholar
  23. Turleau, E., Grouchey, J. de, Klein, M.: Phylogénie chromosomique de l'homme et des primates hominiens (Pan troglodytes, Gorilla gorilla et Pongo pygmaeus), essai de reconstitution du caryotype de l'ancêtre commun. Ann. Génét. 15, 225–240 (1972)Google Scholar
  24. Yosida, T.H., Sagai, T.: Similarity of Giemsa banding patterns of chromosomes in several species of the genus Rattus. Chromosoma (Berl.) 41, 93–101 (1973)Google Scholar
  25. Zech, L.: Florescence banding techniques. Nobel Symp. 23, 28–31 (1973)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • John W. Bickham
    • 1
  • Robert J. Baker
    • 1
  1. 1.Department of Biological Sciences and The MuseumTexas Tech UniversityLubbockUSA

Personalised recommendations