Journal of Philosophical Logic

, Volume 10, Issue 3, pp 313–339

From worlds to possibilities

  • I. L. Humberstone


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Armstrong, D. M.: A Materialist Theory of the Mind, London, (1968).Google Scholar
  2. [2]
    Barwise, J.: ‘Scenes and Other Situations’, forthcoming in Journal of Philosophy.Google Scholar
  3. [3]
    vanBenthemJ. F. A. K.: The Logic of Time, Filosofisch Instituut, Rijksuniversiteit, Groningen (1980).Google Scholar
  4. [4]
    BigelowJ. C.: ‘Semantics of Probability,’ Synthese 36 (1977) 459–472.Google Scholar
  5. [5]
    Davies, M. K.: ‘Singular Terms, Quantification, and Modality’, B. Phil. Thesis, Oxford (1975).Google Scholar
  6. [6]
    Davies, M. K.: ‘Truth, Quantification, and Modality’, D. Phil Thesis, Oxford (1976).Google Scholar
  7. [7]
    DaviesM. K.: Meaning, Quantification, Necessity: Themes in Philosophical Logic, Routledge and Kegan Paul, London (1981).Google Scholar
  8. [8]
    DummettM. A. E.: ‘The Reality of the Past,’ Proceedings of the Aristotelian Society 69 (1968/9), 239–258.Google Scholar
  9. [9]
    EberleR.: Nominalistic Systems, D. Reidel, Dordrecht (1970).Google Scholar
  10. [10]
    EllisB.: ‘Epistemic Foundations of Logic,’ Journal of Philosophical Logic 5 (1976) 187–204.Google Scholar
  11. [11]
    Ellis, B.: Rational Belief Systems, APQ Monograph Series, Oxford (1980).Google Scholar
  12. [12]
    FineK.: ‘Vagueness, Truth and Logic’, Synthese 30 (1975) 265–300.Google Scholar
  13. [13]
    vanFraassenB. C.: ‘Meaning Relations among Predicates’, Nous 1 (1967) 161–179.Google Scholar
  14. [14]
    Gödel K.: ‘Zur intuitionistischen Arithmetik und Zahllentheorie’, Ergebnisse eines methematischen Kolloquiums (ed. K. Menger) 4 (1931/2), 34–38.Google Scholar
  15. [15]
    HumberstoneI. L.: ‘Interval Semantics for Tense Logic: Some Remarks’, Journal of Philosophical Logic 8 (1979) 171–196.Google Scholar
  16. [16]
    Kamp, J. A. W.: ‘Two Theories about Adjectives’, in E. L. Keenan (ed.), Formal Semantics of Natural Language, Cambridge, (1975), pp. 123–155.Google Scholar
  17. [17]
    Lemmon, E. J. and Scott, D. S.: in K. Segerberg (ed.), An Introduction to Modal Logic, APQ Monograph Series, Oxford (1977).Google Scholar
  18. [18]
    Lewis, D. K.: Counterfactuals, Oxford (1977).Google Scholar
  19. [19]
    Lewis, D. K.: ‘Logic for Equivocators’, unpublished paper (1980).Google Scholar
  20. [20]
    LewisD. K.: ‘Attitudes De Dicto and De Se’, Philosophical Review 87 (1979) 513–543.Google Scholar
  21. [21]
    MeredithC. A. and PriorA. N.: ‘Modal Logic with Functorial Variables and a Contingent Constant’, Notre Dame Journal of Formal Logic 6 (1965) 99–109.Google Scholar
  22. [22]
    PollockJ. L.: Subjunctive Reasoning D. Reidel, Dordrecht (1976).Google Scholar
  23. [23]
    Prior, A. N.: Formal Logic, Oxford (1962) (First edn., 1955).Google Scholar
  24. [24]
    RöperP.: ‘Intervals and Tenses’ Journal of Philosophical Logic 9 (1980) 451–469.Google Scholar
  25. [25]
    Savage, L. J.: The Foundations of Statistics, New York (1954).Google Scholar
  26. [26]
    SuppesP.: ‘The Essential but Implicit Role of Modal Concepts in Science’, in K. F.Schaffner and R. S.Cohen (eds.) PSA 1972 D. Reidel, Dordrecht (1974), pp. 305–314.Google Scholar
  27. [27]
    TennantN.: ‘Recursive Semantics for Knowledge and Belief’, The Monist 60 (1977) 419–431.Google Scholar

Copyright information

© D. Reidel Publishing Co 1981

Authors and Affiliations

  • I. L. Humberstone

There are no affiliations available

Personalised recommendations