Advertisement

Chromosoma

, Volume 84, Issue 1, pp 145–158 | Cite as

The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells

  • Conly L. Rieder
Article

Abstract

When metaphase PtK1 cells are cooled to 6–8 ° C for 4–6 h the free, polar, and astral spindle microtubules (MTs) disassemble while the MTs of each kinetochore fiber cluster together and persist as bundles of cold-stable MTs. These cold-stable kinetochore fibers are similar to untreated kinetochore fibers in both their length (i.e., 5–6 μm) and in the number of kinetochore-associated MTs (i.e., 20–45) of which they are comprised. Quantitative information concerning the lengths of MTs within these fibers was obtained by tracking individual MTs between serial transverse sections. Approximately 1/2 of the kinetochore MTs in each fiber were found to run uninterrupted into the polar region of the spindle. It can be inferred from this and other data that a substantial number of MTs run uninterrupted between the kinetochore and the polar region in untreated metaphase PtK1 cells.

Keywords

Developmental Biology Transverse Section Polar Region Quantitative Information Spindle Microtubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajer, A.S., Molé-Bajer, J.: Spindle dynamics and chromosome movement. Int. Rev. Cytol, Suppl. 2 (1972)Google Scholar
  2. Begg, D.A., Ellis, G.W.: Micromanipulation studies of chromosome movement. 1. Chromosome spindle attachment and the mechanical properties of chromosomal spindle fibers. J. Cell Biol. 82, 528–541 (1979a)Google Scholar
  3. Begg, D.A., Ellis, G.W.: Micromanipulation studies of chromosome movement. 2. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle. J. Cell Biol. 82, 542–554 (1979b)Google Scholar
  4. Brinkley, B.R., Murphy, P., Richardson, L.C.: Procedure for embedding in situ selected cells cultured in vitro. J. Cell Biol. 35, 279–283 (1967)Google Scholar
  5. Brinkley, B.R., Cartwright, J.: Organization of microtubules in the spindle: Differential effects of cold shock on microtubule stability. J. Cell Biol. 47 (2 pt. 2):25a (1970)Google Scholar
  6. Brinkley, B.R., Cartwright, J.: Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J. Cell Biol. 50, 416–431 (1971)Google Scholar
  7. Brinkley, B.R., Cartwright, J.: Cold labile and cold stable microtubules in the mitotic spindle of mammalian cells. Ann. N.Y. Acad. Science, 253, 428–439 (1975)Google Scholar
  8. Bulinski, J.C., Borisy, G.G.: Immunofluorescence localization of HeLa cell microtubule-associated proteins on microtubules in vitro and in vivo. J. Cell Biol. 87, 792–801 (1980)Google Scholar
  9. DeMey, J., Moeremans, M., Geuens, G., Nuydens, R., VanBelle, H., DeBrabander, M.: Immunocytochemical evidence for the association of calmodulin with microtubules of the mitotic apparatus. In: Microtubules and microtubule inhibitors 1980 (M. DeBrabander and J. DeMey, eds.), pp 227–242. New York: Elsevier Press 1980Google Scholar
  10. Fuge, H.: Arrangement of microtubules and the attachment of chromosomes to the spindle during anaphase in Tipulid spermatocytes. Chromosoma (Berl.) 45, 245–260 (1974)Google Scholar
  11. Fuge, H.: Ultrastructure of the mitotic spindle. Int. Rev. Cytol. Suppl. 6 (1977)Google Scholar
  12. Gould, R.R., Borisy, G.G.: The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J. Cell Biol. 73, 601–615 (1977)Google Scholar
  13. Inoué, S.: Organization and function of the mitotic spindle. In: Primitive motile systems in cell biology, (R.D. Allen and N. Kamiya, eds.), pp. 549–598. New York: Academic Press 1964Google Scholar
  14. Lafountain, J.R., Thomas, H.R.: The ultrastructure of spindle microtubules after freeze-etching and negative staining in situ. J. Ultrastruct. Res., 51, 340–347 (1975)Google Scholar
  15. Lambert, A.M., Bajer, A.S.: Microtubule distribution and reversible arrest of chromosome movement induced by low temperature. Cytobiologie 15, 1–15 (1977)Google Scholar
  16. Margolis, R., Wilson, L., Kiefer, B.: Mitotic mechanism based on intrinsic microtubule behavior. Nature (Lond.) 272, 450–452 (1978)Google Scholar
  17. McDonald, K., Cande, W.Z.: Structural and physiological studies of mitotic mammalian cells. J. Cell Biol. 87 (2 pt. 2), 236a (1980)Google Scholar
  18. McDonald, K., Pickett-Heaps, J.D., McIntosh, J.R., Tippit, D.H.: On the mechanism of anaphase spindle elongation in Diatoma vulgare. J. Cell Biol., 74, 377–388 (1977)Google Scholar
  19. McIntosh, J.R., Cande, W.A., Snyder, J.A.: Structure and physiology of the mammalian mitotic spindle. In: Molecules and cell movement (S. Inoue and R.E. Stephens, eds.), pp. 31–76. New York: Raven Press 1975aGoogle Scholar
  20. McIntosh, J.R., Cande, W.A., Snyder, J.A., Vanderslice, K.: Studies on the mechanism of mitosis. Ann. N.Y. Acad. Sci. 253, 407–427 (1975b)Google Scholar
  21. McIntosh, J.R., Sisken, J.E., Chu, L.K.: Structural studies on mitotic spindles isolated from cultured human cells. J. Ultrastruct. Res. 66, 40–52 (1979)Google Scholar
  22. Nicklas, R.B.: Mitosis. In: Advances in Cell Biology, (D.M. Prescott, L. Goldstein and E.H. McConkey, eds.), pp. 225–297. New York: Appelton Press 1971Google Scholar
  23. Nicklas, R.B.: Chromosome movement: Current models and experiments on living cells. In: Molecules and cell movement (S. Inoué and R.E. Stephens, eds.), pp. 97–117. New York: Raven Press 1975Google Scholar
  24. Rieder, C.L.: Thick and thin serial sectioning for the three-dimensional reconstruction of biological ultrastructure. In: Methods in cell biology, 22, 215–249 (1981)Google Scholar
  25. Rieder, C.L., Bajer, A.S.: Heat induced reversible hexagonal packing of spindle microtubules. J. Cell Biol., 74, 717–725 (1977)Google Scholar
  26. Rieder, C.L., Borisy, G.G.: The attachment of kinetochores to the prometaphase spindle in PtK1 cells. Recovery from low temperature treatment. Chromosoma (Berl.) 82, 693–716 (1981)Google Scholar
  27. Roos, U.-P.: Light and electron microscopy of rat kangaroo cells in mitosis. I. Formation and breakdown of the mitotic apparatus. Chromosoma (Berl.) 40, 43–82 (1973a)Google Scholar
  28. Roos, U.P.: Light and electron microscopy of rat kangaroo cells in mitosis. II. Kinetochore structure and function. Chromosoma (Berl.) 41, 195–220 (1973b)Google Scholar
  29. Salmon, E.D., Begg, D.A.: Functional implications of cold-stable microtubules in kinetochore fibers of insect spermatocytes during anaphase. J. Cell Biol. 85, 853–865 (1980)Google Scholar
  30. Salmon, E.D., Goode, D., Maugel, T.K., Boner, D.B.: Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells. J. Cell Biol. 69, 443–454 (1976)Google Scholar
  31. Schibler, M.J., Pickett-Heaps, J.D.: Mitosis in Oedogonium: Spindle microfilaments and the origin of the kinetochore fiber. J. Cell Biol., 22, 678–698 (1980)Google Scholar
  32. Webb, B.C., Wilson, L.: Cold-stable microtubules from brain. Biochemistry 19, 1993–2001 (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Conly L. Rieder
    • 1
  1. 1.New York State Department of Health, Division of Laboratories and ResearchEmpire State PlazaAlbanyUSA

Personalised recommendations