Polar Biology

, Volume 7, Issue 6, pp 379–382 | Cite as

Metabolic rates and elemental composition of the Antarctic krill, Euphausia superba dana

  • H. Ishii
  • M. Omori
  • M. Maeda
  • Y. Watanabe
Short Note


Metabolic Rate Elemental Composition Antarctic Krill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anon (1973) Ortho-phosphate in water and seawater, Industrial method No 155-71W. Technicon Instruments Co, Tarrytown, New YorkGoogle Scholar
  2. Anon (1978) Ammonia in water and seawater. Industrial method No 154-71W/B. Technicon Instruments Co, Tarrytown, New YorkGoogle Scholar
  3. Biggs DC (1982) Zooplankton excretion and NH+4 cycling in near-surface waters of the Southern Ocean. 1. Ross Sea, austral summer 1977–1978. Polar Biol 1:55–67Google Scholar
  4. Clarke A (1980) The biochemical composition of krill, Euphausia superba Dana, from South Georgia. J Exp Mar Biol Ecol 43:221–236Google Scholar
  5. Clarke A (1984) Lipid content and composition of Antarctic krill, Euphausia superba Dana. J Crust Biol 4:285–294Google Scholar
  6. Ferguson CF, Raymont JKB (1974) Biochemical studies on marine zooplankton. XII. Further investigations on Euphausia superba Dana. J Mar Biol Assoc UK 54:719–725Google Scholar
  7. Hirche HJ (1983) Excretion and respiration of the Antarctic krill Euphausia superba. Polar Biol 1:205–209Google Scholar
  8. Ikeda T (1974) Nutritional ecology of marine zooplankton. Mem Fac Fish Hokkaido Univ 22:1–97Google Scholar
  9. Ikeda T (1984) Sequences in metabolic rates and elemental composition (C, N, P) during the development of Euphausia superba Dana and estimated food requirements during its life span. J Crust Biol 4:273–284Google Scholar
  10. Ikeda T, Dixon P (1982) Body shrinkage as a possible over-wintering mechanism of the Antarctic krill, Euphausia superba Dana. J Exp Mar Biol Ecol 62:143–151Google Scholar
  11. Ikeda T, Hing Fay E (1981) Metabolic activity of zooplankton from the Antarctic Ocean. Aust J Mar Freshwater Res 32:921–930Google Scholar
  12. Ikeda T, Mitchell AW (1982) Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to their body size and chemical composition. Mar Biol 71:283–298Google Scholar
  13. Ishii H, Omori M, Murano M (1985) Feeding behavior of the Antarctic krill, Euphausia superba Dana. I. Reaction to size and concentration of food particles. Trans Tokyo Univ Fish 6:117–124Google Scholar
  14. Kils U (1978/79) Performance of Antarctic krill Euphausia superba at different levels of oxygen saturation. Meeresforsch Rep Mar Res 27:35–47Google Scholar
  15. Omori M (1969) Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. Mar Biol 3:4–10Google Scholar
  16. Omori M, Ikeda T (1984) Methods in marine zooplankton ecology. Wiley-Interscience, New York, 332 ppGoogle Scholar
  17. Rakusa-Saszczewski S, Opalinski KW (1978) Oxygen consumption in Euphausia superba. Pol Arch Hydrobiol 25:633–641Google Scholar
  18. Segawa S, Kato M, Murano M (1982) Respiration and ammonia excretion rates of the Antarctic krill, Euphausia superba Dana. Trans Tokyo Univ Fish 5:177–187Google Scholar
  19. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Bull Fish Res Board Can 167, 310 ppGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • H. Ishii
    • 1
  • M. Omori
    • 1
  • M. Maeda
    • 1
  • Y. Watanabe
    • 2
  1. 1.Tokyo University of FisheriesTokyoJapan
  2. 2.Central Research Institute of Electric Power IndustryAbiko, ChibaJapan

Personalised recommendations