, Volume 56, Issue 3, pp 249–263 | Cite as

Centromere behavior during interphase and meiotic prophase in Allium fistulosum from 3-D, E.M. reconstruction

  • Kathleen Church
  • Peter B. Moens


Centromeres at premeiotic interphase are clustered and situated in a small area of the nucleus opposite to the nuclear envelope associated heterochromatic masses. The centromeres may occur singly or they may associate to form a structure composed of 2 or more centromeres. Many centromere associations are nonhomologous. Interphase centromeres are not attached to the nuclear envelope. — At zygotene and pachytene centromeres are no longer clustered at one pole of the nucleus but rather are distributed throughout the nucleus. Premeiotic associations appear to be resolved prior to meiotic pairing. Only homologous centromere associations occur during zygotene and pachytene. There is no indication that premeiotic centromere associations are involved in prezygotene alignment of homologous chromosomes.


Developmental Biology Small Area Nuclear Envelope Homologous Chromosome Meiotic Prophase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bajer, A., Molé-Bajer, J.: Architecture and function of the mitotic spindle. Advanc. Cell molec. Biol. 1, 213–262 (1971)Google Scholar
  2. Braselton, J.P., Bowen, C.C.: The ultrastructure of the kinetochores of Lilium longiflorum during the first meiotic division. Caryologia (Firenze) 24, 49–58 (1971)Google Scholar
  3. Brinkley, B.R., Stubblefield, E.: Ultrastructure and interaction of the kinetochore and centriole in mitosis and meiosis. Advanc. Cell Biol. 1, 119–185 (1970)Google Scholar
  4. Carlson, J.G.: On the mitotic movements of chromosomes. Science 124, 203–206 (1956)Google Scholar
  5. Carpenter, A.T.C.: Electron microscopy of meiosis in Drosophila melanogaster females. I. Structure, arrangement, and temporal change of the synaptonemal complex in wild-type. Chromosoma (Berl.) 54, 157–182 (1975)Google Scholar
  6. Counce, S.J., Meyer, G.F.: Differentiation of the synaptonemal complex and the kinetochore in Locusta spermatocytes studied by whole mount electron microscopy. Chromosoma (Berl.) 44, 231–253 (1973)Google Scholar
  7. Dietrich, J.: Organization ultrastructurale du fuseau de caryocinèse en prométaphase dans les allules-mères de microspores du Lis. C.R. Acad. (Paris), Ser. D 266, 579–581 (1968)Google Scholar
  8. Evans, H.J.: Chromatid aberrations induced by gamma irradiation. I. The structure and frequency of chromatid interchanges in diploid and tetraploid cells of Vicia faba. Genetics 46, 257–275 (1961)Google Scholar
  9. Feldman, M.: Regulation of somatic association and meiotic pairing in common wheat. Proc. 3rd Int. Wheat Genet. Symp. Aust. Acad. Sci. Canberra, 169–178 (1968)Google Scholar
  10. Feldman, M., Méllo-Sampayo, T., Sears, E.R.: Somatic association in Triticum aestivum. Proc. nat. Acad. Sci. (Wash.) 56, 1192–1199 (1966)Google Scholar
  11. Fox, D.P.: The effects of X-rays on the chromosomes of locust embryos. II. Chromatid interchanges and the organization of the interphase nucleus. Chromosoma (Berl.) 20, 173–194 (1966)Google Scholar
  12. Fussell, C.R.: The position of interphase chromosomes and late replicating DNA in centromere and telomere regions of Allium cepa L. Chromosoma (Berl.) 50, 201–210 (1975)Google Scholar
  13. Gillies, C.B.: Ultrastructural analysis of maize pachytene karyotypes by three dimensional reconstruction of the synaptonemal complexes. Chromosoma (Berl.) 43, 145–146 (1973)Google Scholar
  14. Gillies, C.B.: Synaptonemal complex and chromosome structure. Ann. Rev. Genet. 91–109 (1975a)Google Scholar
  15. Gillies, C.B.: An ultrastructural analysis of chromosomal pairing in maize. C.R. Trav. Carlsberg 40, 135–161 (1975b)Google Scholar
  16. Grell, R.F.: Meiotic and somatic pairing. In: Genetic organization (E.W. Caspari and A.W. Raven, eds.), p. 361. New York: Academic Press 1969Google Scholar
  17. Hsu, T.C., Cooper, J.E.K., Mace, M.L., Brinkley, B.R.: Arrangement of centromeres in mouse cells. Chromosoma (Berl.) 34, 73–87 (1971)Google Scholar
  18. Jancy, R.C.: A new source of evidence for the polarized nucleus in maize. Canad. J. Genet. Cytol. 17, 245–252 (1975)Google Scholar
  19. Kitani, Y.: Orientation, arrangement and association of somatic chromosomes. Jap. J. Genet. 38, 244–256 (1963)Google Scholar
  20. Lafontaine, J.G.: A light and electron microscope study of small spherical nuclear bodies in meristematic cells of Allium cepa, Vicia faba and Raphanus-sativus. J. Cell Biol. 26, 1–17 (1965)Google Scholar
  21. Lafontaine, J.G.: Structural components of the nucleus in mitotic plant cells. In: Ultrastructure in biological systems: The nucleus (A.J. Dalton and F. Haguenau, eds.), Vol. 3, p. 151. New York: Academic Press Inc. 1968Google Scholar
  22. Lafontaine, J.G.: Ultrastructural organization of plant cell nuclei. In: The cell nucleus (H. Busch, ed.), Vol. 1, p. 149–185. New York: Academic Press 1974Google Scholar
  23. Lafontaine, J.G., Lord, A.: Organization of nuclear structures in mitotic cells. In: Handbook of molecular cytology (A. Lima-de-Faria, ed.), pp. 381–411. Amsterdam: North-Holland Publ. Co. 1969Google Scholar
  24. Levan, A.: Cytological studies in Allium. IV. Allium fistulosum. Svensk Bot. Tidskr. 27, 211–232 (1933)Google Scholar
  25. Luykx, P.: Cellular mechanisms of chromosome distribution. Int. Rev. Cytol., Suppl. 2 (1970)Google Scholar
  26. Macgregor, H.C., Keger, J.: The chromosomal localization of a heavy satellite DNA in the testes of Plethodon c. cinereus. Chromosoma (Berl.) 33, 167–182 (1971)Google Scholar
  27. Maguire, M.P.: Role of heterochromatin in homologous chromosome pairing: Evaluation of evidence. Science 176, 543–544 (1972)Google Scholar
  28. Moens, P.B.: Synaptinemal complexes in Lilium tigrinum (triploid) sporocytes. Canad. J. Genet. Cytol. 10, 799–807 (1968)Google Scholar
  29. Moens, P.B.: The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes. Chromosoma (Berl.) 28, 1–25 (1969)Google Scholar
  30. Moens, P.B.: Serial sectioning in electron microscopy. Proc. Canad. Fed. Biol. Soc. 13, 160 (1970)Google Scholar
  31. Roos, U.P.: Light and electron microscopy of rat kangaroo cells in Mitosis. II. Kinetochore structure and function. Chromosoma (Berl.) 41, 195–220 (1973)Google Scholar
  32. Sax, K.: An analysis of X-ray induced chromosomal abberations in Tradescantia. Genetics 25, 41–68 (1940)Google Scholar
  33. Stack, S.M., Clark, C.R.: Chromosome polarization and nuclear rotation in Allium cepa roots. Cytologia (Tokyo) 39, 553–560 (1974)Google Scholar
  34. Vanderlyn, L.: Somatic mitosis in the root tip of Allium cepa — A review and reorientation. Bot. Rev. 14, 270–318 (1948)Google Scholar
  35. Wagenaar, E.G.: End to end chromosome attachments in mitotic interphase and their possible significance to meiotic chromosome pairing. Chromosoma (Berl.) 26, 410–426 (1969)Google Scholar
  36. White, M.J.D.: Animal cytology and evolution, 3rd edit., p. 7. Cambridge: University Press 1973Google Scholar
  37. Wilson, E.B.: The cell in development and heredity, 3rd ed. New York: The Macmillan Company 1925Google Scholar
  38. Wilson, H.J.: The fine structure of the kinetochore in meiotic cells of Tradescantia. Planta (Berl.) 78, 379–385 (1968)Google Scholar
  39. Yunis, J.J., Yasmineh, W.G.: Heterochromatin, satellite DNA, and cell function. Science 174, 1200–1209 (1971)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Kathleen Church
    • 2
  • Peter B. Moens
    • 1
  1. 1.Department of BiologyYork UniversityDownsviewCanada
  2. 2.Department of ZoologyArizona State UniversityTempeUSA

Personalised recommendations