Advertisement

Molecular and General Genetics MGG

, Volume 125, Issue 1, pp 53–90 | Cite as

Mitochondrial genetics

V. Multifactial mitochondrial crosses involving a mutation conferring paromomycin-resistance in Saccharomyces cerevisiae
  • Klaus Wolf
  • Bernard Dujon
  • Piotr P. Slonimski
Article

Summary

  1. 1.

    A mutation (PR) conferring resistance to paromomycin is shown to be located on the mit-DNA. At the cellular level it increases the resitance 30 to 40 fold and increases the sensitivity to chloramphenicol 2 fold. It is suggested that the PR acts at the mitoribosomal level.

     
  2. 2.

    The rules applicable to the mitochondrial genetic system and previously delinated from the studies of the ω-RI-RII-RIIIsegment specifying mitoribosomal functions have been shown to apply equally to PR strains. ω+ PR strains have been constructed from ω PR mutants.

     
  3. 3.

    Homo- and heterosexual crosses involving 3 and 4 mutations located at the loci RI, RIII, OI, PIand conferring resistance respectively to chloramphenicol, erythromycin, oligomycin, and paromomycin have been performed in all possible cis trans configurations. PR and OR mutations present similar features of recombination which are different from those shown by the CR and ER mutations. PR and OR are not included in the ω-RI-RII-RIIIsegment and are not linked or only very loosely linked to it. PR and OR are not linked together.

     
  4. 4.

    Main features of mitochondrial multifactorial crosses are analysed in terms of the frequency and the distribution of different classes of recombinants. In homosexual crosses a positive coincidence is observed for all combinations of three or four markers. In heterosexual crosses the polarity of recombination is shown to depend on the segment considered. An excess of the allele of a third marker brought by the ω parent is observed among any polar recombinants for two others.

     

Keywords

Recombination Erythromycin Chloramphenicol Cellular Level Genetic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avner, P. R., Coen, D., Dujon, B., Slonimski, P. P.: Mitochondrial genetics. IV Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae Molec. gen. Genet. 125, 9–52 (1973)CrossRefGoogle Scholar
  2. Avner, P. R., Griffiths, D. E.: Oligomycin resistant mutants in yeast. FEBS Letters 10, 202–207 (1970)CrossRefGoogle Scholar
  3. Avner, P. R., Griffiths, D. E.: Studies on energy-linked reactions: Isolation and characterization of oligomycin-resistant mutants of Saccharomyces cerevisiae. Europ. J. Biochem. 32, 301–311 (1973a)CrossRefGoogle Scholar
  4. Avner, P. R., Griffiths, D. E.: Studies on energy-linked reactions: Genetic analysis of oligomycin-resistant mutants of Saccharomyces cerevisiae. Europ. J. Biochem. 32, 312–321 (1973b)CrossRefGoogle Scholar
  5. Bolotin, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P. P.: La recombinaison des mitochondries chez S. cerevisiae. Bull. Inst. Pasteur 69, 215–239 (1971)Google Scholar
  6. Bunn, C. L., Mitchell, C. H., Lukins, H. B., Linnane, A. W.: Biogenesis of mitochondria. XVIII. A new class of cytoplasmically determined antibiotic resistant mutants in S. cerevisiae. Proc. nat. Acad. Sci. (Wash.) 67, 1233–1240 (1971).CrossRefGoogle Scholar
  7. Coen, D., Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P. P., Bolotin-Fukuhara, M.: Mitochondrial genetics VIII. Control of genetic recombination by mitochondrial locus ω. In preparation (1973)Google Scholar
  8. Coen, D., Deutsch, J., Netter, P., Petrochilo, E., Slonimski, P. P.: Mitochondrial genetics. I. Methodology and phenomenology. In: Control of organelle development. Symp. Soc. Exp. Biol. (P. L. Miller, ed.), vol. 24, p. 449–496 London: Cambridge University Press 1970Google Scholar
  9. Davey, P. J., Haslam, J. M., Linnane, A. W.: Biogenesis of mitochondria. 12. The effects of aminoglycoside antibiotics on the mitochondrial and cytoplasmic protein synthesizing systems of S. cerevisiae. Arch. Biochem. Biophys. 136, 54–64 (1970)CrossRefGoogle Scholar
  10. Faye, G., Fukuhara, H., Grandchamp, C., Lazowska, J., Michel, F., Casey, J., Getz, G. S., Locker, J., Rabinowitz, M., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Dujon, B., Netter, P., and Slonimski, P. P.: Mitochondrial nucleic acids in the petite colonie mutants: Deletions and repetitions of genes. In press, Biochimie 55 (1973)CrossRefGoogle Scholar
  11. Fowell, R. R.: Sporulation and hybridization of yeasts. In: The yeasts vol. 1 (Rose, A. M., Harrison, J. S., eds.), p. 303–383. New York: Academic Press 1969Google Scholar
  12. Griffiths, D. E., Avner, P. R., Lancashire, W. E., Turner, J. R.: Studies of energy-linked reactions-isolation and properties of mitochondrial oligomycin resistant trialkyl-tin resistant and uncoupler resistant mutants of yeast. In: The biochemistry and biophysics of mitochondrial membranes (E. Carafoli, A. L. Lehninger and N. Siliprandi, eds.), p. 505–521. New York: Academic Press 1972Google Scholar
  13. Grivell, L. A., Netter, P., Borst, P., Slonimski, P. P.: Mitochondrial antibiotic resistance in yeast: ribosomal mutants resistant to chloramphenicol erythromycin and spiramycin. Biochim. biophys. Acta (Amst.) 312, 358–367 (1973)CrossRefGoogle Scholar
  14. Howell, N., Trembath, M. K., Linnane, A. W., Lukins, H. B.: Biogenesis of mitochondria. 30. An analysis of polarity of mitochondrial gene recombination and transmission. Molec. gen. Genet. 122, 37–51 (1973)CrossRefGoogle Scholar
  15. Kleese, R. A., Grotbeck, R. C., Snyder, J. R.: Recombination among three mitochondrial genes in yeast (S. cerevisiae) J. Bact. 112, 1023–1025 (1972)PubMedGoogle Scholar
  16. Kutzleb, R., Schweyen, R., Kaudewitz, F.: Extrachromosomal inheritance of paromomycin resistance in yeast. Isolation and characterisation of mutants. Submitted to Molec. gen. Genet.Google Scholar
  17. Linnane, A. W., Saunders, G. W., Gingold, E. B., Lukins, H. B.: Biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in S. cerevisiae. Proc. nat. Acad. Sci. (Wash.) 59, 903–910 (1968)CrossRefGoogle Scholar
  18. Mitchell, C. H., Bunn, C. L., Lukins, H. B., Linnane, A. W.: Biogenesis of mitochondria. 23. The biochemical and genetic characteristics of two different oligomycin resistant mutants of S. cerevisiae under the influence of cytoplasmic genetic modification. Bioenergetics 4, 161–184 (1973)CrossRefGoogle Scholar
  19. Mortimer, R. K., Hawthorne, D. C.: Yeast genetics, p. 386–460. In: The yeasts, vol. 1 (Rose, A. H., Harrison, J. S., eds.) London-New York: Academic Press 1969Google Scholar
  20. Netter, P., Petrochilo, E., Slonimski, P. P., Bolotin-Fukuhara, M., Coen, D., Deutsch, J., Dujon, B.: Mitochondrial genetics VII. Allelism and mapping studies of ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin in S. cerevisiae. In preparation (1973)Google Scholar
  21. Rank, G. H., Bech-Hansen, N. T.: Somatic segregation, recombination, asymmetrical distribution and complementation tests of cytoplasmically-inherited antibiotic-resistance mitochondrial markers in S. cerevisiae. Genetics 72, 1–15 (1972)PubMedPubMedCentralGoogle Scholar
  22. Stuart, K. D.: Cytoplasmic inheritance of oligomycin and rutamycin resistance in yeast. Biochem. biophys. Res. Commun. 39, 1045–1051 (1970).CrossRefGoogle Scholar
  23. Thomas, D. Y., Wilkie, D.: Recombination of mitochondrial drug-resistance factors in S. cerevisiae. Biochem. biophys. Res Commun. 30, 368–372 (1968).CrossRefGoogle Scholar
  24. Trembath, M. K., Bunn, C. L., Lukins, H. B., Linnane, A. W.: Biogenesis of mitochondria. 27. Genetic and biochemical characterisation of cytoplasmic and nuclear mutations to spiramycin resistance in S. cerevisiae. Molec. gen. Genet. 121, 35–48 (1973)CrossRefGoogle Scholar
  25. Visconti, N., Delbrück, M.: The mechanism of genetic recombination in phage. Genetics 38, 5–33 (1953).PubMedPubMedCentralGoogle Scholar
  26. Wakabayashi, K.: Oligomycin resistance in yeast. II. Change in mitochondrial ATPase of a mutant and its genetic character. J. Antibiotics 25, 475–476 (1972)CrossRefGoogle Scholar
  27. Wakabayashi, K., Gunge, N.: Extrachromosomal inheritance of oligomycin resistance in yeast. FEBS Letters 6, 302–304 (1970).CrossRefGoogle Scholar
  28. Weisblum, B., Davies, J.: Antibiotic inhibitors of the bacterial ribosome. Bact. Rev. 32, 493–528 (1968)PubMedGoogle Scholar
  29. Wilkie, D.: Analysis of mitochondrial drug resistance in S. cerevisiae. Symp. of the Soc. for Exp. Biol. (ed. P. L. Miller), vol 24, p. 71–84. London: Cambridge University Press 1970Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Klaus Wolf
    • 1
  • Bernard Dujon
    • 2
  • Piotr P. Slonimski
    • 2
  1. 1.Institut für Genetik der Universität MünchenMünchenGermany
  2. 2.Centre de Génétique Moléculaire du C.N.R.S.Gif sur YvetteFrance

Personalised recommendations