, Volume 57, Issue 2, pp 177–184 | Cite as

The chromosomal localisation of satellite DNA in Ptyas mucosus (Ophidia, Colubridae)

  • L. Singh
  • I. F. Purdom
  • K. W. Jones


Ptyas mucosus male DNA has a repetitious DNA satellite (p= 1.700 g cm−3) constituting 5% of the haploid genome. In situ hybridisation of radioactive complementary RNA (cRNA) has revealed that satellite sequences are located in the centromeric region of one pair of macrochromosomes and in the terminal region of 8 pairs of microchromosomes. These regions are constitutively heterochromatic as revealed by C-banding. The possibility of involvement of satellite rich microchromosomes in nucleolus organisation is discussed.


Developmental Biology Chromosomal Localisation Terminal Region Centromeric Region Nucleolus Organisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Au, W., Fechheimer, N.S., Soukup, S.: Identification of the sex chromosomes in the Bald eagle. Canad. J. Genet. Cytol. 17, 187–191 (1975)Google Scholar
  2. Birnstiel, M.L., Spiers, J., Purdom, I.F., Jones, K., Loening, U.E.: Properties and composition of the isolated ribosomal DNA satellite of Xenopus laevis. Nature (Lond.) 219, 454–463 (1968)Google Scholar
  3. Bostock, C.: Repetitious DNA. In: Advanc. Cell Biol. (D. Prescott et al., eds.). Vol. 2, p. 153. New York: Appleton-Century-Crofts 1971Google Scholar
  4. Brown, J.E., Jones, K.W.: Localisation of satellite DNA in the microchromosomes of the Japanese quail by in situ hybridisation. Chromosoma (Berl.) 38, 313–318 (1972)Google Scholar
  5. Comings, D.E., Avelino, E., Becak, W.: Heavy shoulder DNA in snakes. Cytogenet. Cell Genet. 12, 2–7 (1973)Google Scholar
  6. Comings, D.E., Mattoccia, E.: Evidence that heavy shoulder DNA may be localized to the microchromosomes of birds. Exp. Cell Res. 70, 256–269 (1972)Google Scholar
  7. Gillespie, D., Spiegelman, S.: A quantitative assay for DNA-RNA hybrids with DNA immobilised on a membrane. J. molec. Biol. 12, 829–842 (1965)Google Scholar
  8. Hsu, T.C., Cooper, J.E.K., Mace, M.J.Jr., Brinkley, B.R.: Arrangement of centromeres in mouse cells. Chromosoma (Berl.) 34, 73–87 (1971)Google Scholar
  9. Jensen, R.H., Davidson, N.: Spectrophotometric, potentiometric and density gradient ultracentrifugation studies of the binding of silver ion by DNA. Biopolymers 4, 17–32 (1966)Google Scholar
  10. Jones, K.W.: Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature (Lond.) 225, 912–915 (1970)Google Scholar
  11. Jones, K.W.: In situ hybridisation. In: New techniques in biophysics and cell biology (R.H. Pain and B.J. Smith, eds.), Vol. 1, pp. 29–66. London: J. Wiley & Sons 1973aGoogle Scholar
  12. Jones, K.W.: Annotation: Satellite DNA. J. med. Genet. 10, 273–281 (1973b)Google Scholar
  13. Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. molec. Biol. 3, 208–218 (1961)Google Scholar
  14. Moar, M.H., Purdom, I.F., Jones, K.W.: Influence of temperature on the detectibility and chromosomal distribution of specific DNA sequences by in situ hybridisation. Chromosoma (Berl.) 53, 345–359 (1975)Google Scholar
  15. Natarajan, A.T., Sharma, R.P.: Tritiated uridine induced chromosome aberrations in relation to heterochromatin and nucleolar organisation in Microtus agrestis L. Chromosoma (Berl.) 34, 168–182 (1971)Google Scholar
  16. Ohno, S.: Sex chromosomes and sex-linked genes. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  17. Ohno, S.: Evolution by gene duplication, pp. 131, 134–137. London: George Allen and Unwin Ltd. 1970Google Scholar
  18. Pardue, M.L., Gall, J.G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358 (1970)Google Scholar
  19. Singh, L.: Evolution of karyotypes in snakes. Chromosoma (Berl.) 38, 185–236 (1972)Google Scholar
  20. Singh, L., Ray-Chaudhuri, S.P.: Localisation of C-band in the W sex chromosome of the common Indian Krait Bungarus caeruleus Schneider. Nucleus (Calcutta) 18 (iii), 163–166 (1975)Google Scholar
  21. Stefos, K., Arrighi, F.E.: Heterochromatic nature of W chromosome in birds. Exp. Cell Res. 68, 228–231 (1971)Google Scholar
  22. Stefos, K., Arrighi, F.E.: Repetitive DNA of Gallus domesticus and its cytological locations. Exp. Cell Res. 83, 9–14 (1974)Google Scholar
  23. Sumner, A.T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972)Google Scholar
  24. Walker, P.M.B.: Origin of satellite DNA. Nature (Lond.) 229, 306–308 (1971)Google Scholar
  25. Yunis, J.J., Yasmineh, W.G.: Model for mammalian constitutive heterochromatin. In: Advanc. cell and molecular biol. (E.J. Dupraw, ed.). Vol. 2, pp. 1–46. New York: Academic Press 1972Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • L. Singh
    • 1
  • I. F. Purdom
    • 1
  • K. W. Jones
    • 1
  1. 1.Institute of Animal GeneticsUniversity of EdinburghEdinburghScotland

Personalised recommendations