Advertisement

Chromosoma

, Volume 98, Issue 6, pp 389–395 | Cite as

The Callimico goeldii (Primates, Platyrrhini) genome: Karyology and middle repetitive (LINE-1) DNA sequences

  • Héctor N. Seuánez
  • Lisa Forman
  • Tetsuji Matayoshi
  • Thomas G. Fanning
Article

Abstract

Callimico goeldii (Goeldi's marmoset) is a neotropical primate with 2n=47,X1X2Y in the male, and 2n=48,X1X1X2X2 in the female, due to a Y-autosome translocation. Karyological comparisons of Callimico, Callithrix jacchus and Cebus apella suggest that Callimico is a member of the Callitrichidae. Isozyme data and restriction mapping of LINE-1 repetitive elements in these species and in a variety of other neotropical primates confirm these findings and supply strong evidence for including Callimico in the Callitrichidae.

Keywords

Strong Evidence Developmental Biology Restriction Mapping Repetitive Element Neotropical Primate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armada JLA, Barroso CML, Lima MMC, Muniz JAPC, Seuánez HN (1987) Chromosome studies in Alouatta belzebul. Am J Primatol 13:283–296Google Scholar
  2. Bender MA, Chu EHY (1963) The chromosomes of Primates. In: Buettner-Janusch J (ed) Evolutionary and genetic biology of the Primates. Academic Press, London, New YorkGoogle Scholar
  3. Bender MA, Mettler LE (1960) Chromosome studies of Primates: Callithrix, Leontocebus and Callimico. Cytologia 25:400–404Google Scholar
  4. Benirschke K, Anderson JM, Brownhill LE (1962) Marrow chimerism in marmosets. Science 138:513–515Google Scholar
  5. Benirschke K, de Boer LEM, Bogart M (1976) The karyotype of two uakari species Cacajao calvus and C. rubicundus (Primates, Platyrrhini). Genen Phaenen 19:1–6Google Scholar
  6. Casavant NC, Hardies SC, Funk FD, Comer MB, Edgell MH, Hutchison III CA (1988) Extensive movement of LINE ONE sequences in beta-globin loci of Mus caroli and Mus domesticus. Mol Cell Biol 8:4669–4674Google Scholar
  7. de Boer LEM (1974) Cytotaxonomy of the Platyrrhini. Genen Phaenen 17:1–115Google Scholar
  8. Dutrillaux B, Descailleux L, Viegas-Pequignot E, Couturier J (1981) Y-autosome tanslocation in Cacajao calvus rubicundus (Platyrrhini). Ann Genet 24:197–201Google Scholar
  9. Egozcue J, Perkins EM, Hagemenas F (1968) Chromosomal evolution in marmosets, tamarins and pinches. Folia Primat 9:81–94Google Scholar
  10. Fanning TG, Singer MF (1987a) LINE-1: a mammalian transposable element. Biochim Biophys Acta 910:203–212Google Scholar
  11. Fanning TG, Singer MF (1987b) The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucleic Acids Res 15:2251–2260Google Scholar
  12. Ford SM (1980) Callitrichids as phyletic dwarfs, and the place of the Callitrichidae in Platyrrhini. Primates 21:31–43Google Scholar
  13. Gengozian N, Brewen JG, Preston RJ, Batson JS (1980) Presumptive evidence for the lack of functional germ cell chimerism in the marmoset. J Med Primatol 9:9–27Google Scholar
  14. Harris H, Hopkinson DA (1978) Handbook of enzyme electrophoresis in human genetics. North Holland, Amsterdam New York OxfordGoogle Scholar
  15. Hattori M, Kuhara S, Takenaka O, Sakaki Y (1986) L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature 321:625–628Google Scholar
  16. Hershkovitz P (1977) Living New World monkeys (Platyrrhini), vol. 1. University of Chicago Press, ChicagoGoogle Scholar
  17. Hsu TC, Hampton SH (1970) Chromosomes of Callithricidae with special reference to an XX/“XO” sex chromosome system in Goeldi's marmoset (Callimico goeldii Thomas 1904). Folia Primatol 13:183–195Google Scholar
  18. Ikeuchi T (1984) Inhibitory effect of ethidium bromide on mitotic chromosome condensation and its application to high resolution chromosome banding. Cytogenet Cell Genet 38:56–61Google Scholar
  19. Koiffmann CP (1977) Variabilidae cromossomica na familia Cebidae (Platyrrhini, Primata). Ph. D. Dissertation, University of Sao PauloGoogle Scholar
  20. Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison III CA (1986) The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol Cell Biol 6:168–182Google Scholar
  21. Ma NSF, Jones TC, Thorington RW, Miller A, Morgan L (1975) Y-autosome translocation in the howler monkey, Alouatta palliata. J Med Primatol 4:299–307Google Scholar
  22. Ma NSF, Elliot MW, Morgan L, Miller A, Jones TC (1976) Translocation of Y chromosome to an autosome in the Bolivian owl monkey, Aotus. Am J P Anthropol 45:191–202Google Scholar
  23. Ma NSF, Hall R, Sehgal PK, Simeone T, Jones TC (1980) XX/“XO” sex determination system in a population of Peruvian owl monkeys, Aotus. J Hered 71:336–342Google Scholar
  24. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual, Cold Spring Harbor, New YorkGoogle Scholar
  25. Martin SL, Voliva CF, Hardies SC, Edgell MH, Hutchison III CA (1985) Tempo and mode of concerted evolution in the L1 repeat family of mice. Mol Biol Evol 2:127–140Google Scholar
  26. Matayoshi T, Seuánez HN, Nasazzi N, Nagle C, Armada JL, Freitas L, Alves G, Barroso CML, Howlin E (1987) Heterochromatic variation in Cebus apella (Cebidae, Platyrrhini) of different geographic regions. Cytogenet Cell Genet 44:158–162Google Scholar
  27. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  28. Sarich VM, Cronin JE (1980) South American mammal molecular systematics, evolutionary clocks, and continental drift. In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York, NY, pp 399–421Google Scholar
  29. Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O'Hara B, Rossiter JP, Cooley T, Heath P, Smith KD, Margolet L (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1:113–125Google Scholar
  30. Seuánez HN, Forman L, Alves G (1988) Comparative chromosome morphology in three Callitrichid genera: Cebuella, Callithrix, and Leontopithecus. J Hered 79:418–424Google Scholar
  31. Shehee WR, Chao SF, Loeb DD, Comer MB, Hutchison III CA, Edgell MH (1987) Determination of a functional ancestral sequence and definition of the 5′ end of A-type mouse L1 elements. J Mol Biol 196:757–767Google Scholar
  32. Skowronski J, Fanning TG, Singer MF (1988) Unit-length Line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8:1385–1397Google Scholar
  33. Wayne RK, O'Brien SJ (1987) Allozyme divergence within the Canidae. Syst Zool 36:339–355Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Héctor N. Seuánez
    • 1
  • Lisa Forman
    • 2
  • Tetsuji Matayoshi
    • 3
  • Thomas G. Fanning
    • 4
  1. 1.Laboratory of Viral CarcinogenesisNational Cancer InstituteFrederickUSA
  2. 2.Department of Zoological Research, National Zoological ParkSmithsonian InstitutionWashington, DCUSA
  3. 3.Centro de Educacion Medica e Investigaciones Clinicas Norberto QuirnoBuenos AiresArgentina
  4. 4.National Cancer InstituteBethesdaUSA

Personalised recommendations