Human Genetics

, Volume 73, Issue 1, pp 77–80 | Cite as

The genes for human gastrin and cholecystokinin are located on different chromosomes

  • T. Lund
  • A. H. M. Geurts van Kessel
  • S. Haun
  • J. E. Dixon
Original Investigations


The polypeptide hormones gastrin and cholecystokinin are structurally related, having the identical pentapeptide GWMDF located at their C-terminus. The precursors to these two hormones also show amino acid homology, suggesting that they may have a common ancestral origin. Recombinant DNA clones corresponding to gene fragments encoding human gastrin and cholecystokinin were used to determine their respective chromosomal localization by analyzing human-rodent cell lines. We have assigned the cholecystokinin gene to human chromosome 3q12-3pter and the gastrin gene to chromosome 17q.


Polypeptide Metabolic Disease Gene Fragment Human Chromosome Chromosomal Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Deschenes RJ, Haun RS, Funckes CL, Dixon JE (1985a) A gene encoding rat cholecystokinin, isolation, nucleotide sequence, and promotor activity. J Biol Chem 260:1280–1286Google Scholar
  2. Deschenes RJ, Narayana SVL, Argos P, Dixon JE (1985b) Primary structural comparison of the prehormones cholecystokinin and gastrin. FEBS Lett 189:135–138Google Scholar
  3. Flavell RA, Kooter JM, De Boer E, Little PFR, Williamson R (1978) Analysis of the β-globin gene loci in normal and Hb Lepore DNA: direct determination of gene linkage and intergene distance. Cell 15:25–41Google Scholar
  4. Geurts van Kessel AHM, Tetteroo PAT, von dem Borne AEG, Hagemeijer A, Bootsma D (1983) Expression of human myeloidassociated surface antigen in human-mouse cell hybrids. Proc Natl Acad Sci USA 80:3748–3752Google Scholar
  5. Gubler U, Chua AO, Hoffman BJ, Collier KJ, Eng J (1984) Cloned cDNA to cholecystokinin mRNA predict an identical preprocholecystokinin in pig brain and gut. Proc Natl Acad Sci USA 81: 4307–4310Google Scholar
  6. Ito R, Sato K, Helmer T, Jay G, Agarwal K (1984) Structural analysis of the gene encoding human gastrin: the large intron contains an Alu sequence. Proc Natl Acad Sci USA 81:4662–4666Google Scholar
  7. Jeffreys AJ, Flavell RA (1977) A physical map of the DNA regions flanking the rabbit globin gene. Cell 12:429–439Google Scholar
  8. Johnson LR (1976) The trophic action of gastroentestinal hormones Gastroenterology 70:278–288Google Scholar
  9. Kato K, Hayashizaki Y, Takahashi Y, Himeno S, Matsubara K (1983) Molecular cloning on the human gastrin gene. Nucleic Acids Res 11:359–361Google Scholar
  10. Larsson L-I, Rehfeld JF (1977) Evidence for a common evolutionary origin of the gastrin and cholecystokinin. Nature 269:335–338Google Scholar
  11. Maniatis T, Fritch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  12. Rehfeld JF (1981) Four basic characteristics of the gastrin-cholecystokinin system. Am J Physiol 240:G255-G266Google Scholar
  13. Rehfeld JF, Larsson L-I, Goltermann NR, Schwartz TW, Holst JJ, Jensen SL, Morley JS (1980) Neural regulation of pancreatic hormone secretion by the C-terminal tetrapeptide of CCK. Nature 284:33–38Google Scholar
  14. Sorenson GD, Pettengill OS, Brinck-Johnsen T, Cate CC, Maurcr LH (1981) Hormone production by cultures of small cell carcinoma of the lung. Cancer 47:1289–1296Google Scholar
  15. Takahashi Y, Kato K, Hayashizaki Y, Wakabashi T, Ohtsuka E, Matsuki S, Ikehara M, Matsubara K (1985) Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc Natl Acad Sci USA 82:1931–1935Google Scholar
  16. van de Rijn, Geurts van Kessel AHM, Kroezen V, van Agthoven AJ, Verstijnen K, Terhorst C, Hilgers J (1983) Localization of a gene controlling the expression of the human transferrin receptor to the region q12-qter of chromosome 3. Cytogenet Cell Genet 36: 525–531Google Scholar
  17. Whang-Peng J, Kao-Shan CS, Lee EC, Bunn PA, Carney DN, Gazdar AF, Minna JD (1982a) Specific chromosomal defect associated with human small-cell lung cancer: deletion 3p(14–23). Science 215:181–182Google Scholar
  18. Whang-Peng J, Bunn PA Jr, Kao-Shan CS, Lee EC, Carney DN, Gazdar A, Minna JD (1982b) A nonrandom chromosomal abnormality, del 3p(14–23), in human small cell lung cancer (SCLC). Cancer Genet Cytogenet 6:119–139Google Scholar
  19. Wiborg O, Berglund L, Boel E, norris F, Norris K, Rehfeld JF, Marcker KA, Vuust J (1984) Structure of a human gastrin gene. Proc Natl Acad Sci USA 81:1067Google Scholar
  20. Yoo OJ, Powell CT, Agarwal KL (1982) Molecular cloning and nucleotide sequence of a full length cDNA coding for porcine gastrin. Proc Natl Acad Sci USA 79:1049–1053Google Scholar
  21. Zollinger RM, Ellison EH (1955) Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann Surg 142:709–728Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • T. Lund
    • 1
  • A. H. M. Geurts van Kessel
    • 2
  • S. Haun
    • 3
  • J. E. Dixon
    • 3
  1. 1.Iniversity Department of Clinical Chemistry 6321RigshospitaletCopenhagenDenmark
  2. 2.Department of Cell Biology and GeneticsErasmus UniversityRotterdamThe Netherlands
  3. 3.Department of BiochemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations