, Volume 86, Issue 3, pp 409–428 | Cite as

The kinetochores of Caenorhabditis elegans

  • Donna G. Albertson
  • J. Nichol Thomson


Light microscopy of the mitotic chromosomes of Caenorhabditis elegans suggests that non-localized kinetochores are present, since the chromosomes appear as stiff rods 1 to 2 μm in length and lack any visible constriction. The holokinetic structure was confirmed by reconstructions of electron micrographs of dividing nuclei in serially sectioned embryos. In prophase the kinetochore appears as an amorphous projection approximately 0.18–0.2 μm in diameter in cross section and in longitudinal section it appears to be continuous along the chromatin. At prometaphase and metaphase the kinetochore is a convex plaque covering the poleward face of the chromosome and extending the length of the chromosome. In longitudinal section the kinetochore is a trilaminar structure with electron dense inner and outer layers of 0.02 μm, and an electron lucent middle layer of 0.03 μm. The inner layer is adjacent to a more electron dense region of chromatin. The kinetochore was also seen as a band extending the length of the chromosome in whole mount preparations of chromosomes stained with ethanolic phosphotungstic acid. Most gamma ray induced chromosome fragments segregate normally in embryonic mitoses, but some fragments display aberrant behavior. Similar behavior was seen in embryos carrying a genetically characterized free duplication. It is suggested that mitotic segregation of small fragments may be inefficient because the probability of attachment of microtubules to the kinetochore is proportional to kinetochore length.


Developmental Biology Electron Micrographs Outer Layer Longitudinal Section Caenorhabditis Elegans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertson, D.G., Nwaorgu, O.C., Sulston, J.E.: Chromatin diminution and a chromosomal mechanism of sexual differentiation in Strongyloides papillosus. Chromosoma (Berl.) 75, 75–87 (1979)Google Scholar
  2. Albertson, D.G., Sulston, J.E., White, J.G.: Cell cycling and DNA replication in a mutant blocked in cell division in the nematode Caenorhabditis elegans. Dev. Biol. 63, 165–178 (1978)Google Scholar
  3. Allen, R.D., David, G.B., Nomarski, G.: The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z. Wiss. Mikrosk. 69, 193–221 (1969)Google Scholar
  4. Bauer, H., Le Calvez, J.: Das Verhalten der Chromosome von Ascaris megalocephala nach Röntgenbestrahlung. Chromosoma (Berl.) 2, 593–729 (1944)Google Scholar
  5. Bokhari, F.S., Godward, M.B.E.: The ultrastructure of the diffuse kinetochore in Luzula nivea. Chromosoma (Berl.) 79, 125–136 (1980)Google Scholar
  6. Bostock, C.J., Sumner, A.T.: The eukaryotic chromosome, pp. 278–279. New York: North-Holland Publishing Co. 1978Google Scholar
  7. Braselton, J.P.: The ultrastructure of the non-localized kinetochores of Luzula and Cyperus. Chromosoma (Berl.) 36, 89–99 (1971)Google Scholar
  8. Brenner, S.: The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)Google Scholar
  9. Buck, R.C.: Mitosis and meiosis in Rhodnius prolixus: The fine structure of the spindle and diffuse kinetochore. J. Ultrastruct. Res. 18, 489–501 (1967)Google Scholar
  10. Carlson, J.G.: Mitotic behavior of induced chromosomal fragments lacking spindle attachments in the neuroblasts of the grasshopper. Proc. Natl. Acad. Sci. (Wash.) 24, 500–507 (1938a)Google Scholar
  11. Carlson, J.G.: Some effects of X-irradiation on the neuroblast chromosomes of the grasshopper, Chortophaga viridifasciata. Genetics 23, 296–609 (1938b)Google Scholar
  12. Counce, S.J., Meyer, G.F.: Differentiation of the synaptonemal complex and the kinetochore in Locusta spermatocytes studied by whole mount electron microscopy. Chromosoma (Berl.) 44, 231–253 (1973)Google Scholar
  13. Deppe, U., Schierenberg, E., Cole, T., Krieg, C., Schmitt, D., Yoder, B., von Ehrenstein, G.: Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. (Wash.) 75, 376–380 (1978)Google Scholar
  14. Gall, J.G., Pardue, M.L.: Nucleic acid hybridization in cytological preparations. In: Methods in enzymology (L. Grossman, K. Moldave, eds.), vol. 21, pp. 470–480. New York: Academic Press 1971Google Scholar
  15. Goldstein, P., Triantaphyllou, A.C.: The ultrastructure of sperm development in the plantparasitic nematode Meloidogyne hapla. J. Ultrastruct. Res. 71, 143–153 (1980)Google Scholar
  16. Herman, R.K., Albertson, D.G., Brenner, S.: Chromosome rearrangements in Caenorhabditis elegans. Genetics 83, 91–105 (1976)Google Scholar
  17. Herman, R.K., Madl, J.E., Kari, C.K.: Duplications in Caenorhabditis elegans. Genetics 92, 419–435 (1979)Google Scholar
  18. Hodgkin, J.: More sex determination mutants of Caenorhabditis elegans. Genetics 96, 649–664 (1980)Google Scholar
  19. Hughes-Schrader, S., Ris, H.: The diffuse spindle attachment of coccids, verified by the mitotic behavior of induced chromosome fragments. J. Exp. Zool. 87, 429–456 (1941)Google Scholar
  20. Hughes-Schrader, S., Schrader, F.: The kinetochore of the hemiptera. Chromosoma (Berl.) 12, 327–350 (1961)Google Scholar
  21. Laufer, J.S., Bazzicalupo, P., Wood, W.B.: Segregation of developmental potential in early embryos of Caenorhabditis elegans. Cell 19, 569–577 (1980)Google Scholar
  22. Mather, K., Stone, L.H.A.: The effect of X-radiation upon somatic chromosomes. J. Genet. 28, 1–24 (1933)Google Scholar
  23. Miller, O.L., Beatty, B.R.: Visualization of nucleolar genes. Science 164, 955–957 (1969)Google Scholar
  24. Moses, M.J., Counce, S.J.: Electron microscopy of kinetochores in whole mount spreads of mitotic chromosomes from HeLa cells. J. Exp. Zool. 189, 115–120 (1974)Google Scholar
  25. Nordenskiold, H.: Cytotaxonomical studies in the genus Luzula. I. Somatic chromosomes and chromosome numbers. Hereditas (Lund) 37, 325–355 (1951)Google Scholar
  26. Painter, T.S., Stone, W.: Chromosome fusion and speciation in Drosophilae. Genetics 20, 327–341 (1935)Google Scholar
  27. Rattner, J.B., Branch, A., Hamkalo, B.A.: Electron microscopy of whole mount metaphase chromosomes. Chromosoma (Berl.) 52, 329–338 (1975)Google Scholar
  28. Ris, H.: A cytological and experimental analysis of the meiotic behavior of the univalent X chromosome in the bearberry aphid Tamalia (= Phyllaphis) coweni (CKII). J. Exp. Zool. 90, 267–330 (1942)Google Scholar
  29. Ris, H., Witt, P.L.: Structure of the mammalian kinetochore. Chromosoma (Berl.) 82, 153–170 (1981)Google Scholar
  30. Roos, U.-P.: Light and electron microscopy of rat kangaroo cells in mitosis. II. Kinetochore structure and function. Chromsoma (Berl.) 41, 195–220 (1973)Google Scholar
  31. Schrader, F.: Notes on the mitotic behavior of long chromosomes. Cytologia (Tokyo) 6, 422–430 (1935)Google Scholar
  32. Stevens, B.J., White, J.G.: Computer reconstruction of mitochondria from yeast. In: Methods in enzymology (S. Fleischer, L. Packer eds.), vol. 56, pp. 718–728. New York: Academic Press 1979Google Scholar
  33. Sulston, J.E., Brenner, S.: The DNA of Caenorhabditis elegans. Genetics 77, 95–104 (1974)Google Scholar
  34. Triantaphyllou, A.C.: Genetics and cytology. In: Plant parasitic nematodes (B.M. Zuckerman, W.F. Mai, R.A. Rohde eds.), vol 2, pp. 1–34. New York: Academic Press 1971Google Scholar
  35. Ward, S., Thomson, N., White, J.G., Brenner, S.: Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J. Comp. Neur. 160, 313–338 (1975)Google Scholar
  36. White, M.J.D.: Chromosome cycle of Ascaris megalocephala. Nature (Lond.) 137, 783 (1936)Google Scholar
  37. White, M.J.D.: Animal cytology and evolution, pp. 490–494. Cambridge: Cambridge University Press 1973Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Donna G. Albertson
    • 1
    • 2
  • J. Nichol Thomson
    • 1
  1. 1.MRC Laboratory of Molecular BiologyCambridgeEngland
  2. 2.Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations