Chromosoma

, Volume 75, Issue 2, pp 185–198 | Cite as

Non-repetitive DNA sequence divergence in phylogenetically diploid and tetraploid teleostean species of the family cyprinidae and the order isospondyli

  • Jörg Schmidtke
  • Eberhard Schmitt
  • Elisabeth Matzke
  • Wolfgang Engel
Article

Abstract

Non-repetitive DNA of anciently tetraploid teleostean species was analysed for the presence of duplicated sequences. Closely related diploid species were investigated in comparison. From the reassociation kinetics of total nuclear DNA, rate constants and fraction sizes of classes of repetitive and non-repetitive sequences were determined. DNA fractions enriched in the slowest renaturing sequence class were prepared and subjected to reassociation. The rate constants of these reactions were compared with the values expected for single-copy DNA from analytical genome size determinations. From reassociated DNA enriched in non-repetitive sequences also the melting temperatures were determined as a measure of internal base sequence heterogeneity. It has been shown that the two ancient tetraploids Cyprinus carpio and Thymallus thymallus are, with regard to the thermal stability of reassociated non-repetitive DNA, and with regard to the correspondence of reaction rates with the values expected for single copy DNA, indistinguishable from diploid controls (Rutilus rutilus, Clupea harengus and Sprattus sprattus). The tetraploid species Salmo irideus, Salvelinus fontinalis and Coregonus lavaretus appear as very recent tetraploids with regard to these criteria. The significance of the results for estimating the time of occurence of polyploidisation events in these taxa is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allendorf, F.W., Utter, R.M., May, B.P.: Gene duplication within the family Salmonidae. II. Detection and determination of the genetic control of duplicate loci through inheritance studies and the examination of populations. In: Isozymes (C.L. Markert, ed.), Vol. IV, pp. 415–432, New York: Academic Press 1975Google Scholar
  2. Beçak, M.L., Beçak, W., Rabello, M.N.: Cytological evidence of constant tetraploidy in the bisexual South American frog Odontophrynus americanus. Chromosoma (Berl.) 19, 188–193 (1966)Google Scholar
  3. Beçak, W., Goissis, L.: DNA and RNA content in diploid and tetraploid amphibians. Experientia (Basel) 27, 345–346 (1971)Google Scholar
  4. Beçak, W., Pueyo, M.T.: Gene regulation in the polyploid amphibian Odontophrynus americanus. Exp. Cell. Res. 63, 448–451 (1970)Google Scholar
  5. Beçak, W., Schwantes, A.R., Beçak, M.L.: Polymorphism of albumin-like proteins in the South American tetraploid frog Odontophrynus americanus (Salientia: Ceratophrydidae). J. exp. Zool. 168, 473–476 (1968)Google Scholar
  6. Bonner, T.I., Brenner, D.J., Neufeld, B.R., Britten, R.J.: Reduction in the rate of DNA reassociation by sequence divergence. J. molec. Biol. 81, 123–135 (1973)Google Scholar
  7. Britten, R.J., Cetta, A., Davidson, E.H.: The single-copy DNA sequence polymorphism of the sea urchin Strongylocentrotus purpuratus. Cell 15, 1175–1186 (1978)Google Scholar
  8. Britten, R.J., Graham, D.E., Neufeld, B.R.: Analysis of repeating DNA sequences by reassociation. In: Methods in enzymology (L. Grossman and K. Moldave, eds.), Vol. 29E, pp. 363–418. New York: Academic Press 1974Google Scholar
  9. Britten, R.J., Kohne D.E.: Repeated sequences in DNA. Science 161, 529–540 (1968)Google Scholar
  10. Cairns, J.: The chromosome of E. coli. Cold Spr. Harb. Symp. quant. Biol. 28, 43–46 (1963)Google Scholar
  11. Davisson, M.T., Wright, J.E., Atherton, L.M.: Cytogenetic analysis of pseudolinkage of LDH loci in the teleost genus Salvelinus. Genetics 73, 645–658 (1973)Google Scholar
  12. Engel, W., Schmidtke, J., Wolf, U.: Diploid-tetraploid relationships in teleostean fishes. In: Isozymes (L. Markert, ed.), Vol. IV, pp. 449–462. New York: Academic Press 1975Google Scholar
  13. Epplen, J.T., Leipoldt, M., Engel, W., Schmidtke, J.: DNA sequence organisation in avian genomes. Chromosoma (Berl.) 69, 307–321 (1978)Google Scholar
  14. Ferris, S.D., Whitt, G.S.: Loss of duplicate gene expression after polyploidisation. Nature (Lond.) 265, 258–260 (1977a)Google Scholar
  15. Ferris, S.D., Whitt, G.S.: Duplicate gene expression in diploid and tetraploid loaches (Cypriniformes, Cobitidae). Biochem. Genet. 15, 1097–1112 (1977b)Google Scholar
  16. Ferris, S.D., Whitt, G.S.: The evolution of duplicate gene expression in the carp (Cyprinus carpio). Experientia (Basel) 33, 1299–1301 (1977c)Google Scholar
  17. Ferris, S.D., Whitt, G.S.: Phylogeny of tetraploid catastomid fishes based on the loss of duplicate gene expression. Syst. Zool. 27, 189–206 (1978)Google Scholar
  18. Galau, G.A., Chamberlin, M.E., Hough, B.R., Britten, R.J., Davidson, E.H.: Evolution of repetitive and non-repetitive DNA in two species of Xenopus. In: Molecular evolution (F.J. Ayala, ed.), p. 200. Sunderland, Mass.: Sinauer Press 1976Google Scholar
  19. Goldberg, R.B.: DNA sequence organisation in the soybean plant. Biochem. Genet. 16, 45–68 (1978)Google Scholar
  20. Harpold, M.M., Craig, S.P.: The evolution of nonrepetitive DNA in sea urchins. Differentiation 10, 7–11 (1978)Google Scholar
  21. Huxley, J.: Evolution: The modern synthesis. Allen and Unwin: London 1942Google Scholar
  22. Klose, J., Wolf, U., Hitzeroth, H., Ritter, H., Atkin, N.B., Ohno, S.: Duplication of the LDH gene loci by polyploidisation in the fish order Clupeiformes. Humangenetik 5, 190–196 (1968)Google Scholar
  23. Kohne, D.E., Chiscon, J.A., Hoyer, B.H.: Evolution of mammalian DNA. Proc. 6th Berk. Symp. Math. Stat. Prob. (L.M. LeCame, J. Neyman and E.L. Scott, eds.) Vol. V, pp. 193–209. Los Angeles: University of California Press 1972Google Scholar
  24. Mandel, M., Marmur, J.: Use of ultraviolet absorbance — temperature profile for determining the guanine plus cytosine content of DNA. In: Methods in enzymology (L. Grossman and K. Moldave, eds.), Vol. 12B, pp. 195–206. New York: Academic Press 1968Google Scholar
  25. McCarthy, B.J., Farquhar, M.N.: The rate of change of DNA in evolution. Brookhaven Symp. Biol. 23, 1–43 (1972)Google Scholar
  26. Mitra, R., Bhatia, C.R.: Repeated and non-repeated nucleotide sequences in diploid and polyploid wheat species. Heredity 31, 251–262 (1973)Google Scholar
  27. Murray, M.G., Cuellar, R.E., Thompson, W.F.: DNA sequence organisation in the pea genome. Biochemistry 17, 5781–5790 (1978)Google Scholar
  28. Nei, M., Chakraborty, R.: Genetic distance and electrophoretic identity between taxa. J. molec. Evol. 2, 323–328 (1973)Google Scholar
  29. Obruchev, D.V.: Fundamentals of Paleontology, Vol. XI, Agnatha, Pisces. Jerusalem: Israel Program for Scientific Translations 1967Google Scholar
  30. Ohno, S.: Evolution by gene duplication. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  31. Ohno, S.: Protocordata, Cyclostomata and Pisces. In: Animal Cytogenetics (B. John, ed.) 4. Chordata 1. Berlin-Stuttgart: Gebrüder Borntraeger 1974Google Scholar
  32. Ohno, S., Atkin, N.B.: Comparative DNA values and chromosome complements in eight species of fishes. Chromosoma (Berl.) 18, 455–466 (1966)Google Scholar
  33. Ohno, S., Muramoto, J., Christian, L., Atkin, N.B.: Diploid-tetraploid relationship among Old-World members of the fish family Cyprinidae. Chromosoma (Berl.) 23, 1–9 (1967)Google Scholar
  34. Ohno, S., Stenius, C., Faisst, E., Zenzes, M.T.: Postzygotic chromosomal rearrangements in rainbow trout (Salmo irideus Gibbons). Cytogenetics 4, 119–129 (1965)Google Scholar
  35. Ordahl, C.P.: Reassociation kinetics of polyploid hepatocyte DNA. Biochim. biophys. Acta (Amst.) 474, 17–29 (1977)Google Scholar
  36. Schmid, C.W., Deininger, P.L.: Sequence organisation of the human genome. Cell 6, 345–358 (1975)Google Scholar
  37. Schmidtke, J., Atkin, N.B., Engel, W.: Gene action in fish of tetraploid origin. II. Cellular and biochemical parameters in Clupeoid and Salmonoid fish. Biochem. Genet. 13, 301–309 (1975a)Google Scholar
  38. Schmidtke, J., Beçak, W., Engel, W.: The reduction of genic activity in the tetraploid amphibian Odontophrynus americanus is not due to loss of ribosomal DNA. Experientia (Basel) 32, 27–28 (1976)Google Scholar
  39. Schmidtke, J., Engel, W.: Gene action in fish of tetraploid origin. I. Cellular and biochemical parameters in Cyprinid fish. Biochem. Genet. 13, 45–51 (1975)Google Scholar
  40. Schmidtke, J., Engel, W.: Gene action in fish of tetraploid origin. III. Ribosomal DNA amount in Cyprinid fish. Biochem. Genet. 14, 19–26 (1976)Google Scholar
  41. Schmidtke, J., Schulte, B., Kuhl, P., Engel, W.: Gene action in fish of tetraploid origin. V. Cellular DNA and protein content and enzyme activities in Cyprinid, Clupeoid, and Salmonoid species. Biochem. Genet. 14, 975–980 (1976a)Google Scholar
  42. Schmidtke, J., Zenzes, M.T., Dittes, H., Engel, W.: Regulation of cell size in fish of tetraploid origin. Nature (Lond.) 254, 426–247 (1975)Google Scholar
  43. Schmidtke, J., Zenzes, M.T., Weiler, C., Bross, K., Engel, W.: Gene action in fish of tetraploid origin. IV. Ribosomal DNA amount in Clupeoid and Salmonoid fish. Biochem. Genet. 14 (1976b)Google Scholar
  44. Schwantes, M.L.B., Schwantes, A.R., Beçak, W.: Electrophoretic studies on polyploid amphibians. I. 6-phosphogluconate dehydrogenase (6-PGD). Comp. biochem. Physiol. 56 B, 393–396 (1977)Google Scholar
  45. Smith, D.B., Flavell, R.B.: Characterisation of the wheat genome by renaturation kinetics. Chromosoma (Berl.) 50, 223–242 (1975)Google Scholar
  46. Straus, N.A.: Comparative DNA renaturation kinetics in amphibians. Proc. nat. Acad. Sci. (Wash.) 68, 799–802 (1971)Google Scholar
  47. Uyeno, T., Smith, G.R.: Tetraploid origin of the karyotype of Catastomid fishes. Science 175, 644–646 (1972)Google Scholar
  48. Wolf, U., Ritter, H., Atkin, N.B., Ohno, S.: Polyploidisation in the fish family Cyprinidae, order Cypriniformes. I. DNA content and chromosome sets in various species of Cyprinidae. Humangenetik 7, 240–244 (1969)Google Scholar
  49. Zimmerman, J.L., Goldberg, R.B.: DNA sequence organisation in the genome of Nicotiana tabacum. Chromosoma (Berl.) 59, 227–252 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Jörg Schmidtke
    • 1
  • Eberhard Schmitt
    • 1
  • Elisabeth Matzke
    • 1
  • Wolfgang Engel
    • 1
  1. 1.Institut für Humangenetik der UniversitätGöttingenFederal Republic of Germany

Personalised recommendations