Advertisement

Archives of Microbiology

, Volume 160, Issue 4, pp 312–318 | Cite as

Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea

  • Kathleen M. Ledyard
  • Edward F. DeLong
  • John W. H. Dacey
Original Papers

Abstract

A bacterium which cleaves dimethylsulfoniopropionate (DMSP) to form dimethylsulfide (DMS) was isolated from surface Sargasso Sea water by a DMSP enrichment technique. The isolate, here designated LFR, is a Gram-negative, obligately aerobic, rod-shaped, carotenoid-containing bacterium with a DNA G+C content of 70%. Sequencing and comparison of its 16S ribosomal ribonucleic acid (rRNA) with that of known eubacteria revealed highest similarity (91% unrestricted sequence similarity) to Roseobacter denitrificans (formerly Erythrobacter species strain OCh114), an aerobic, bacteriochlorophyll-containing marine representative of the α-Proteobacteria. However, physiological differences between the two bacteria, and the current lack of other characterized close relatives, preclude assignment of strain LFR to the Roseobacter genus. Screening of fifteen characterized marine bacteria revealed only one, Pseudomonas doudoroffii, capable of degrading DMSP to DMS. Strain LFR is deposited with the American Type Culture Collection (ATCC 51258) and 16S rRNA sequence data are available under GenBank accession number 15345.

Key words

Dimethylsulfoniopropionate Dimethylsulfide DMSP lyase marine bacteria α-Proteobacteria Roseobacter denitrificans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae MO (1990) Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem 30: 1–29Google Scholar
  2. Baumann L, Baumann P, Mandel M, Allen RD (1972) Taxonomy of aerobic marine enbacteria. J Bacteriol 110: 402–429Google Scholar
  3. Baumann P, Baumann L (1981) The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer-Verlag, Berlin Heidelberg, pp 1302–1331Google Scholar
  4. Britschgi TB, Giovannoni SJ (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol 57: 1707–1713Google Scholar
  5. Burdon, KL (1946) Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 52: 665–678Google Scholar
  6. Cantoni GL, Anderson DG (1956) Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J Biol Chem 222: 171–177Google Scholar
  7. Challenger F, Simpson MI (1948) Studies on biological methylation. J Chem Soc 1948: 1591–1597Google Scholar
  8. Dacey JWH, Blough NV (1987) Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. Geophys Res Lett 14: 1246–1249Google Scholar
  9. DeSoete G (1983) A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48: 621–626Google Scholar
  10. Diaz MR, Visscher PT, Taylor BF (1992) Metabolism of dimethylsulfoniopropionate and glycine betaine by a marine bacterium. FEMS Microbiol Lett 96: 61–66Google Scholar
  11. Dickson DM, Wyn Jones RG, Davenport J (1982) Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes. Planta 155: 409–415Google Scholar
  12. Dunlap PV (1984) The ecology and physiology of the light organ symbiosis between Photobacterium leiognathi and ponyfishes. Ph. D. Thesis, Univ California Los Angeles, 290 ppGoogle Scholar
  13. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–62Google Scholar
  14. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 29–60Google Scholar
  15. Harashima K, Kawazoe K, Yoshida I, Kamata H (1987) Light-stimulated aerobic growth of Erythrobacter species OCH 114. Plant Cell Physiol 28: 365–374Google Scholar
  16. Herdman M, Janvier M, Waterbury JB, Rippka R, Stanier RY, Mandel M (1979) Deoxyribonucleic acid base composition of cyanobacteria. J Gen Microbiol 111: 63–71Google Scholar
  17. Hobbie JE, Daley RJ, Jasper S (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33: 1225–1228Google Scholar
  18. Hultman T, Stahl S, Hornes E, Uhlen M (1989) Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucl Acids Res 17: 4937–4946Google Scholar
  19. Ishida Y (1968) Physiological studies on evolution of dimethyl sulfide from unicellular marine algae. Mem Coll Agric Kyoto 94: 47–82Google Scholar
  20. Kiene RP (1990) Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl Environ Microbiol 56: 3292–3297Google Scholar
  21. Kiene RP, Service SK (1991) Decomposition of dissolved DMSP and DMS in estuarine waters: Dependence on temperature and substrate concentration. Mar Ecol Prog Ser 76: 1–11Google Scholar
  22. Lane DJ (1991) 16S/23S rRNA sequencing. In: Sackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–147Google Scholar
  23. Mason TG, Blunden G (1989) Quaternary ammonium and tertiary sulphonium compounds of algal origin as alleviators of osmotic stess. Bot Mar 32: 313–316Google Scholar
  24. Mayfield CI, Inniss WE (1977) A rapid, simple method for staining bacterial flagella. Can J Microbiol 23: 1311–1313Google Scholar
  25. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71: 491–499Google Scholar
  26. Nealson KH (1978) Isolation, identification, and manipulation of luminous bacteria. Meth Enzymol 57: 153–166Google Scholar
  27. Okamura K, Takamiya K, Nishimura M (1985) Photosynthetic electron transfer system is inoperative in anaerobic cells of Erythrobacter species strain OCh114. Arch Microbiol 142: 12–17Google Scholar
  28. Okamura K, Miyata T, Iwanaga S, Takamiya K, Nishimura M (1987) Complete amino acid sequence of cytochrome c 551 from Erythrobacter species OCh114. J Biochem 101: 957–966Google Scholar
  29. Olsen GJ, Overbeek R, Larsen N, Marsh TL, McCaughey MJ, Maciukenas MA, Kuan W, Macke TJ, Xing Y, Woese CR (1992) The ribosomal RNA database project. Nucl Acids Res 20: 2199–2200Google Scholar
  30. Ruby EG, Nealson KH (1971) Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica: A model of symbiosis based on bacterial studies. Biol Bull 151: 574–586Google Scholar
  31. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491Google Scholar
  32. Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173: 4371–4378Google Scholar
  33. Shiba T (1989) Taxonomy and ecology of marine bacteria. In: Harashima K, Shiba T, Murata N (eds) Aerobic photosynthetic bacteria. Japan Scientific Societies Press, Tokyo, and Springer, Berlin, pp 9–24Google Scholar
  34. Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. System Appl Microbiol 14: 140–145Google Scholar
  35. Shiba T, Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32: 211–217Google Scholar
  36. Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45Google Scholar
  37. Taylor BF, Gilchrist DC (1991) New routes for aerobic biodegradation of dimethylsulfoniopropionate. Appl Environ Microbiol 57: 3581–3584Google Scholar
  38. Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM (1988) The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters. Limnol Oceangr 30: 364–375Google Scholar
  39. Vairavamurthy A, Andreae MO, Iverson RL (1985) Biosynthesis of dimethylsulfide and dimethylsulfoniopropionate by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol Oceanogr 30: 59–70Google Scholar
  40. Wakeham SG, Howes BL, Dacey JWH, Schwarzenbach RP, Zeyer J (1987) Biogeochemical cycling of dimethyl sulfide in a seasonally stratified coastal salt pound. Geochim Cosmochim Acta 51: 1675–1684Google Scholar
  41. Weeks DP, Beerman N, Griffith OM (1986) A small-scale five hour procedure for isolating multiple samples of CsCl-purified DNA. Anal Biochem 152: 376–385Google Scholar
  42. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271Google Scholar
  43. Woese CR, Stackebrandt E, Weisburgh WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984) The phylogeny of purple bacteria: the alpha subdivision. System Appl Microbiol 5: 315–326Google Scholar
  44. Yayanos AA, Dietz AS, van Boxtel R (1982) Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol 44: 1356–1361Google Scholar

Copyright information

© Springer Verlag 1993

Authors and Affiliations

  • Kathleen M. Ledyard
    • 1
  • Edward F. DeLong
    • 2
  • John W. H. Dacey
    • 3
  1. 1.Chemistry DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Department of BiologyUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations